

NetWeave
API Guide
User’s Guide for Version 2.0 January 2003

www.netweave.com

Copyright © 2002-2003 NetWeave Integrated Solutions, Inc.. All rights reserved.
Netweave is a registered trademark of Netweave Integrated Solutions, Inc.

Windows NT is a registered trademark of Microsoft Corporation.
CICS, MVS, and MQSeries are registered trademarks of the IBM Corporation.
UNIX is a registered trademark of The Open Group.

Tandem, Guardian, VMS, and OpenVMS are registered trademarks of Hewlett-Packard.
All other trademarks are noted in the text and are the property of their respective owners.

Table of Contents

INTRODUCTION...1
The NetWeave APIs .. 3

Basic API.. 3
The API Options .. 5

What’s New for Version 2.0... 6

PROGRAMMING CONCEPTS..7
Callback Routines (NWDS_CALL_BACK) .. 8
The Item List (NWDS_ITEM_LIST).. 10
INI Files ... 11
Parameters and Pointers ... 12
Messaging Limits .. 13

API FUNCTIONS GROUPED BY USE..14

ALPHABETICAL LISTING OF FUNCTION CALLS ...17
NWDS_BATCH.. 18
NWDS_CONVERT_DATA... 20
NWDS_CONVERT_RECORD.. 23
NWDS_DISPATCHER_CREATE... 27
NWDS_DISPATCHER_STATS.. 30
NWDS_DISPATCHER_STOP... 32
NWDS_ERROR_TEXT... 34
NWDS_EXECUTE... 36
NWDS_EXIT.. 41
NWDS_FILE_CLOSE... 43
NWDS_FILE_COPY... 46
NWDS_FILE_CREATE.. 49
NWDS_FILE_DELETE... 52
NWDS_FILE_INFO.. 55
NWDS_FILE_OPEN... 59
NWDS_FILE_POSITION.. 63
NWDS_FILE_READ .. 67
NWDS_FILE_REMOVE... 70
NWDS_FILE_UPDATE.. 73
NWDS_FILE_WRITE... 76
NWDS_INI_DELETE_NAME... 79

NWDS_INI_GET_INT.. 81
NWDS_INI_GET_NAME... 83
NWDS_INI_PUT_NAME ... 86
NWDS_INIT... 88
NWDS_IPC_ACCEPT.. 89
NWDS_IPC_BROADCAST.. 92
NWDS_IPC_CONNECT... 95
NWDS_IPC_OPTIONS... 98
NWDS_IPC_PUBLISH..101
NWDS_IPC_READ ...104
NWDS_IPC_REGISTER..107
NWDS_IPC_SHUTDOWN..110
NWDS_IPC_WRITE..113
NWDS_ITEM_LOAD_CHAR..116
NWDS_ITEM_LOAD_HANDLE...118
NWDS_ITEM_LOAD_LONG..120
NWDS_ITEM_LOAD_SHORT..122
NWDS_LOGOFF...124
NWDS_LOGON..126
NWDS_MSGLOG ...127
NWDS_PASSWORD...130
NWDS_PING ..131
NWDS_SESSION_CLOSE...133
NWDS_SLEEP ..136
NWDS_SLEEP_CALLBACK...138
NWDS_SLEEP_CLEAR_CALLBACK...141
NWDS_SQL_COLUMN_BIND..143
NWDS_SQL_COLUMN_COUNT..144
NWDS_SQL_COLUMN_GET...146
NWDS_SQL_COLUMN_INFO..149
NWDS_SQL_CONNECT...152
NWDS_SQL_DISCONNECT...154
NWDS_SQL_EXECUTE..155
NWDS_SQL_FETCH...158
NWDS_SQL_SELECT...161
NWDS_STOP..164
NWDS_SYSTEM_TYPE..166
NWDS_TIMER_START..169
NWDS_TIMER_STOP...172

NWDS_TP_ABORT ..174
NWDS_TP_COMMIT..175
NWDS_TP_RESUME..176
NWDS_TP_START ...178
NWDS_TP_STATUS...181
NWDS_TRIGGER_CANCEL...182
NWDS_TRIGGER_READ ...184
NWDS_TRIGGER_REGISTER..187

ITEM TYPES AND VALUES..189
Common Item List Definitions ..191

Assigning a Constant Length Value to a Parameter..191
Assigning a Variable Length Value to a Parameter..191

Message Queue (FIFO) Files...193
Generic C Files...194

NETWEAVE KERNEL FUNCTIONS FOR WINDOWS NT ...195
NWDS_NT_CLEAR_EVENT..197
NWDS_NT_DEFINE_EVENT...199

NETWEAVE KERNEL FUNCTIONS FOR UNIX...200
NWDS_UX_CLEAR_EVENT..202
NWDS_UX_DEFINE_EVENT...204

NETWEAVE KERNEL FUNCTIONS FOR DEC, VMS, AND OPENVMS............................205
NWDS_VMS_CLEAR_EVENT...207
NWDS_VMS_DEFINE_EVENT..209

NETWEAVE KERNEL FUNCTIONS FOR TANDEM..210
NWDS_KERNEL_CALL_BACK...212
NWDS_KERNEL_RECV_CALL_BACK...214
NWDS_TANDEM_CLEAR_EVENTS..218
NWDS_TANDEM_CLEAR_SYSTEM_EVENTS...220
NWDS_TANDEM_DEFINE_EVENT...222
NWDS_TANDEM_DEFINE_SYSTEM_EVENT..224
NWDS_TANDEM_REPLYX...226
NWDS_TANDEM_RECEIVEINFO ...228

RETURN CODES AND RECOVERY...229

RETURN CODE NUMERIC DEFINITIONS...238

GLOSSARY..246

NetWeave API Reference Manual Version 2.0

January 2003 1

Introduction

The NetWeave API provides function calls for client-transaction applications, messaging services, and
data server applications. The function calls connect local applications and/or file systems to remote
applications and/or file systems.

The NetWeave API is the programmatic interface to the NetWeave product. It is virtually identical on
every platform, though there are constructs, known as itemlists, which you can use to access platform-
specific features through the NetWeave API. The function calls that comprise the NetWeave API are
simple to understand and use in their basic form, while allowing enough power and flexibility for
industrial strength conditions. Examples of this power and flexibility are the itemlist capability, as well
as the ability to use the NetWeave services either synchronously or asynchronously.

The simplest way to use the API is to make synchronous calls. When you call a function synchronously,
the operation (such as reading a record from a remote file, or sending a message to a remote application
and waiting for confirmation) is performed to completion, and the completion status of the function is
returned. The call always waits until the function is completed before it returns to the caller.

In asynchronous operation, the caller specifies a callback routine for NetWeave to invoke once the
operation is complete, the function calls return immediately with a status of PENDING, and the final
operation status is supplied to the callback function that NetWeave will call when the entire operation
has completed.

This section introduces some of the basic concepts used throughout the NetWeave API. The rest of the
manual lists each NetWeave function call alphabetically, explaining the purpose, parameters, return
values, and error codes that are associated with the call.

NetWeave API Reference Manual Version 2.0

January 2003 2

NetWeave API Reference Manual Version 2.0

January 2003 3

The NetWeave APIs

Basic API

The basic NetWeave API implements the features of the NetWeave product on behalf of the calling
application. The table below lists the basic API functions. For a description of what each function does,
please see page 14.

NetWeave option Function Used for

nwds_batch
nwds_execute

Process initialization

nwds_init
nwds_item_load_char
nwds_item_load_handle
nwds_item_load_long
nwds_item_load_short

Initialization

nwds_ini_delete_name
nwds_ini_get_name
nwds_ini_put_name

Retrieving application-specific
information from the INI file.

nwds_ping
nwds_system type

Identification

nwds_tp_abort
nwds_tp_commit
nwds_tp_resume
nwds_tp_start
nwds_tp_status

Transaction processing

nwds_exit
nwds_stop
nwds_sleep
nwds_sleep_callback
nwds_sleep_clear_callback
nwds_timer_start
nwds_timer_stop

Timing/sleep

nwds_convert_data
nwds_convert_record

Translation

Basic NetWeave

nwds_logon
nwds_logoff
nwds_password

Security

(continued)

NetWeave API Reference Manual Version 2.0

January 2003 4

NetWeave option Function Used for

nwds_session_close
nwds_ipc_accept
nwds_ipc_connect
nwds_ipc_options
nwds_ipc_publish
nwds_ipc_read
nwds_ipc_shutdown
nwds_ipc_write

IPC services

nwds_dispatcher_create
nwds_dispatcher_stats
nwds_dispatcher_stop

Thread services

Basic NetWeave

(continued)

nwds_error_text
nwds_msglog

Error messages and logging

NetWeave API Reference Manual Version 2.0

January 2003 5

The API Options

To expand your repertoire beyond what the basic NetWeave API offers, you can add one or more of the
other API options:

• Data server: remote file access
• Message queue: guaranteed delivery messaging FIFOS
• Broadcast services: multicast messaging
• RFT: reliable file transfer

NetWeave option Function Used for

nwds_file_close
nwds_file_create
nwds_file_delete
nwds_file_info
nwds_file_open
nwds_file_position
nwds_file_read
nwds_file_remove
nwds_file_update
nwds_file_write

File services

nwds_sql_column_bind
nwds_sql_column_count
nwds_sql_column_get
nwds_sql_column_info
nwds_sql_connect
nwds_sql_disconnect
nwds_sql_execute
nwds_sql_fetch
nwds_sql_select

SQL

Data server

(formerly client-
database)

nwds_trigger_cancel
nwds_trigger_delete
nwds_trigger_read
nwds_trigger_register

Notification

Message queues
(FIFO)

nwds_file_close
nwds_file_create
nwds_file_info
nwds_file_open
nwds_file_position
nwds_file_read
nwds_file_remove
nwds_file_write

Guaranteed delivery messaging

Broadcast nwds_ipc_broadcast
nwds_ipc_register

Multicast messaging

Command line executable File services

RFT API in development

File transfer

nwds_file_copy File services

NetWeave API Reference Manual Version 2.0

January 2003 6

What’s New for Version 2.0

Many of the enhancements for Version 2.0 of NWDS are configuration-related, and do not affect the
API. The table below lists the topics that have enhancements and the NWDS document that describes
the changes.

Feature Document

Dynamic INI files Configuration Guide

INI file management Configuration Guide

Load balancing Configuration Guide

Platform-specific logging Configuration Guide

Message logging on IBM/CICS IBM Release Notes

Sync API for IBM/CICS C programs IBM Release Notes

Alpha/Open VMS release for OpenVMS 7.1 N/A

NetWeave API Reference Manual Version 2.0

January 2003 7

Programming Concepts

To use the API effectively, you need to understand how to use the following:

• Callback routines
• Item lists
• INI files
• Programming conventions
• Messaging limits

Before using the API functions, please review the information about these topics.

NetWeave API Reference Manual Version 2.0

January 2003 8

Callback Routines (NWDS_CALL_BACK)

A callback routine, sometimes referred to as a completion function, is a user-written function that
executes when the I/O operation completes. To implement NetWeave’s asynchronous function calls,
you have to use callback routines.

A callback structure contains two elements:

• Context, a pointer to a persistent structure in the application’s data space
• Callback function address, a pointer to the application’s comple tion function

The application designer creates a callback structure (shown below) to contain all the information the
application will need to continue its thread of operation when the NetWeave function call completes.

typedef struct {
 NWDS_CONTEXT context;
 NWDS_CALL_BACK_PROC *procedure;
} NWDS_CALL_BACK;

If the context points to something (i.e., is not NULL, which is a valid option), that something must be
available when the callback function executes. Typically, it is not good programming practice to point
to a stack variable, which may or may not be present when the callback is called. Although the context
can point to a global or static data element, it should really point to a dynamically allocated memory
buffer.

The second element of the callback structure is a pointer to the application’s completion function. All
completion functions must follow the format below:

typedef void (NWDS_CALL_BACK_PROC)(NWDS_CONTEXT, NWDS_ERRNO);

NetWeave API Reference Manual Version 2.0

January 2003 9

Parameter Description

NWDS_CONTEXT The same pointer that you passed to NetWeave as the first
parameter of the callback structure. When the operation completes,
NetWeave returns information to indicate the state of the
application at the time the NetWeave call was initiated.

NWDS_ERRNO The return code from the completion of the NetWeave operation.

An asynchronous function call is divided into two parts:

• The initiation phase, which is invoked when the user makes the NetWeave function call. If the
operation returns NWDS_PENDING to the caller, it means that the operation is underway. If it
returns an error, the operation never started. In some rare cases, the function invocation will
return NWDS_SUCCESSFUL to indicate that the function has completed successfully and there
will be no callback invocation.

• The completion phase, which NetWeave invokes after the remote operation has completed. To
indicate the result of the remote operation, NetWeave passes an error condition to the
completion routine.

To call the asynchronous library function calls synchronously, you can either pass a NULL directly, or
set the pointer to the callback structure to NULL. In synchronous operation, when control returns to the
application after calling a NetWeave function, all action is complete. In asynchronous operation,
however, the return value of NWDS_PENDING indicates that although a message has been sent to the
destination, the action is still in progress.

NetWeave API Reference Manual Version 2.0

January 2003 10

The Item List (NWDS_ITEM_LIST)

An item list is an array of elements of type NWDS_ITEM_LIST, as defined below:

typedef struct {
 NWDS_ITEM_TYPE type;
 NWDS_SIZE length;
 Void *item;
}NWDS_ITEM_LIST;

A NetWeave item list lets you use system-specific features to change the usual action of a function call.
You can use an item list to access special functions and features on supported remote platforms.

There are two types of item lists:

• Control lists use the values pointed to by the associated itemlist entry (i.e. the “item”) to
change the function’s default operation.

• Return lists are used to retrieve information. If the call is asynchronous, the item must point to
locations that are global, static, or dynamically allocated memory.

An item list ends with a standard element of type NWDS_END_OF_LIST. An empty (NULL) item list
is an item list that contains only one element, of the type NWDS_END_OF_LIST.

Parameter Description Values

Item type For each item in an itemlist, the
type member indicates the type of
item being supplied and specifies
the optional parameters.

See netweave.h (the NetWeave header
file).

Item length The address stored in the item
parameter points to the Item
length value.

2 (type short)

4 (type long)
The actual length of a control item list’s
array of characters
or
The maximum length of data that can be
copied to the address specified in a return
item list’s buffer.

Item Always holds an address The value, of size item length, supplied to
accompany the item type and length.

NetWeave API Reference Manual Version 2.0

January 2003 11

INI Files

NetWeave uses INI files on each node to configure a NetWeave application network for the following
tasks:

Task Description

Name translation Translates logical names of network objects, such as processes,
files, and tables, to physical names.

Data conversion Describes the structure of network messages to enable NetWeave
to convert data representations between different platforms.

Routing Specifies how messages should travel from one platform to another
through the NetWeave application network.

Performance parameters Specifies parameters, such as buffer sizes, that can affect
NetWeave performance. Typically, you will be using the default
values for these parameters.

A NetWeave INI file uses the same syntax as the Microsoft Windows INI files. For more information
about the INI files, see the NetWeave Configuration Manual.

NetWeave API Reference Manual Version 2.0

January 2003 12

Parameters and Pointers

The syntax example for each function shows the parameters that must be supplied for each function call.
An asterisk (*) before an item name indicates that it is a pointer to the item, not the item itself. Most of
the time NetWeave uses pointers. You can pass simple parameters, such as handles or sizes, directly as
input when you make a function call. When these parameters are returned as output, NetWeave
generally provides a pointer for the item.

NetWeave API Reference Manual Version 2.0

January 2003 13

Messaging Limits

Although message size cannot exceed 32567 bytes for both IPC and queued messaging, there is no limit
to the number of fields in a message. For queued messaging, the amount of available disk storage space
determines how many messages are allowed in a queue.

NetWeave API Reference Manual Version 2.0

January 2003 14

API Functions Grouped by Use

The table below lists the NetWeave API functional groups.

Used for Function name Description

nwds_batch Starts a process on a remote system and waits for it
to complete.

Process
initialization

nwds_execute Starts a remote process and returns.

nwds_init Initializes the NWDS library.

nwds_item_load_char

nwds_item_load_handle

nwds_item_load_long

Initialization

nwds_item_load_short

Handles itemlist loading functions.

nwds_ping Tests for existence of NetWeave connectivity. Identification

nwds_system_type Determines type of remote system.

nwds_exit Returns NetWeave resources to system.

nwds_stop Terminates the process that nwds_execute started.

nwds_sleep Waits for event during asynchronous operation.

nwds_sleep_callback Callback function from nwds_sleep.

nwds_sleep_clear_callback Cancels nwds_sleep_callback.

nwds_timer_start Starts a NetWeave timer.

Timing/Sleep

nwds_timer_stop Stops a NetWeave timer.

nwds_convert_data Converts a record of a specified type from one
platform’s format to another’s.

Translation

nwds_convert_record Translates a message into the format used by
another system/compiler.

(continued)

NetWeave API Reference Manual Version 2.0

January 2003 15

Used for Function name Description

nwds_file_close Closes a file.

nwds_file_copy Copies a file.

nwds_file_create Creates a file.

nwds_file_delete Deletes a file.

nwds_file_info Retrieves information about a file.

nwds_file_open Opens a file.

nwds_file_position Completes a transaction involving a file/queue.

nwds_file_read Reads the first message from the file/queue.

nwds_file_remove Purges a file.

nwds_file_update Updates a specified record in a file.

File
management

nwds_file_write Appends a message to the end of the file /queue.

nwds_ini_delete_name Deletes an INI file definition (memory only).

nwds_ini_get_name Retrieves an INI file definition.

Naming

nwds_ini_put_name Adds/modifies an INI file definition (memory only).

nwds_session_close Returns system resources when terminating a
multicasting session.

nwds_ipc_accept Accepts an IPC connection.

nwds_ipc_broadcast Sends a multicast message.

nwds_ipc_connect Tries to establish an IPC connection.

nwds_ipc_options Queries/modifies IPC parameters

nwds_ipc_publish Publishes the IPC name for subsequent
connections.

nwds_ipc_read Reads an IPC message.

nwds_ipc_register Registers for multicast messages.

nwds_ipc_shutdown Terminates an IPC connection.

IPC

nwds_ipc_write Writes an IPC message.

nwds_logoff Terminates a secure session.

nwds_logon Establishes credentials for a secure session.

nwds_msglog Handles application level message logging to
NetWeave logging facilities.

Security

nwds_password Specifies a password for a secure session.

(continued)

NetWeave API Reference Manual Version 2.0

January 2003 16

Used for Function name Description

nwds_sql_column_bind

nwds_sql_column_count

nwds_sql_column_get

nwds_sql_column_info

nwds_sql_connect

nwds_sql_disconnect

nwds_sql_execute

nwds_sql_fetch

SQL

nwds_sql_select

Handles SQL database operations.

nwds_tp_abort Aborts the transaction in progress.

nwds_tp_commit Commits the transaction in process.

nwds_tp_resume Resumes the transaction in process.

nwds_tp_start Starts a new transaction.

Transaction
Processing

nwds_tp_status Gets the transaction status.

nwds_trigger_cancel Cancels a trigger on a file.

nwds_trigger_delete Deletes a file trigger.

nwds_trigger_read Reads a file trigger.

Notification

nwds_trigger_register Registers for notification of file events.

nwds_dispatcher_create Creates a thread-based connection dispatch
service.

nwds_dispatcher_stats Retrieves the Dispatcher statistics (using the handle
created by nwds_dispatcher_create).

Threads

nwds_dispatcher_stop Terminates Dispatcher operations.

Miscellaneous nwds_error_text Gets error text for the supplied error code.

NetWeave API Reference Manual Version 2.0

January 2003 17

Alphabetical Listing of Function Calls

NetWeave API Reference Manual Version 2.0

January 2003 18

NWDS_BATCH

This function, which is included in all NetWeave releases, starts a process on a remote system. The call
completes when the remote process completes. If the process does not start, the nwds_batch function
returns an error code that indicates why.

To execute a process on a remote system, you can use either nwds_batch (if the process will do
something and then stop) or nwds_execute (if the process runs in the background, or needs to stay
up indefinitely.

NWDS_ERRNO NWDS_BATCH
 (char *system_name,
 char *cli_command,
 NWDS_ITEM_LIST *item_list,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

system_name a The system on which the batch process will run.

cli_command
a

The command that the batch process will execute.
Although the syntax is determined by the operating
system on which the command will run, the command
must consist of all printable characters and be
terminated with a NULL byte.

item_list
a

A pointer to an array of system-specific parameters. Any
item list type appropriate for nwds_execute is usually
appropriate for nwds_batch.

call_back
a

A pointer to a callback structure that contains the
function that NetWeave will call when nwds_batch
completes.

If call_back is set to NULL, the call is synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init() and
before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_execute on page 36.

NetWeave API Reference Manual Version 2.0

January 2003 19

NetWeave API Reference Manual Version 2.0

January 2003 20

NWDS_CONVERT_DATA

This function, which is included in all NetWeave releases, converts a record of a specified type from the
format used by one computer to the format used by another. The nwds_convert_data call is
synchronous and does not take an item list.

NOTE: Before calling nwds_convert_data, make sure the destination location has enough
room to hold the converted data.

NWDS_ERRNO nwds_convert_data
 (NWDS_DATA_CLASS data_type,
 NWDS_SYSTEM_CLASS to_system_type,
 NWDS_SYSTEM_CLASS from_system_type,
 void *to_buffer,
 void *from_buffer);

Parameter Input Output Description

data_type a This value is either NWDS_SHORT or NWDS_LONG.

to_system_type
a

The system type whose format the data will be
converted to. Netweave.h lists all supported system
types. Example:
NWDS_ERRNO nwds_convert_data(
 NWDS_LONG,
 NWDS_MSDOS,
 NWDS_UNIX_680xx,
 &dos_long,
 &unix_long);

from_system_type a The system type whose data you need to convert.

to_buffer a The array where NetWeave places the converted
value.

from_buffer
a

An array in memory that contains the value to be
converted.

Return Code (output)

Return code Description

NWDS_SUCCESSFUL The call completed successfully.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

NWDS_BAD_PARAMETER You are trying to call a function but one of your parameters is out
of range.

NetWeave API Reference Manual Version 2.0

January 2003 21

For more information about the return codes, see page 229.

Related Functions

nwds_convert_record on page 23.

NetWeave API Reference Manual Version 2.0

January 2003 22

NetWeave API Reference Manual Version 2.0

January 2003 23

NWDS_CONVERT_RECORD

This function, which is included in all NetWeave releases, translates a message into the format used by
another system/compiler. You can use nwds_convert_record for either of the following:

• Controlling all translation from the sending or receiving side
• Conversing with existing applications, such as Pathway serverclasses

Translation is controlled by the message name passed as the first argument. This name must match a
group name in the INI file. Translation is also controlled by the alignment parameters of the source and
target systems and compilers. The nwds_convert_record call is synchronous and does not take an
item list or callback.

NWDS_ERRNO nwds_convert_record (
 char *message_name,
 char *source_alignment_parameters,
 char *target_alignment_parameters,
 NWDS_SIZE source_size,
 void *source,
 NWDS_SIZE maximum_target_size,
 void *target,
 NWDS_SIZE *return_size);

Parameter Input Output Description

message_name a The name of the INI file group that represents the
DDL definition of the message in the application’s
INI file. For more information, see the NetWeave
Configuration Manual.

source_alignment_parameters a The name of the INI file group that defines the
source system/compiler alignment parameters
(see “Translation Rules” on the next page).

target_alignment_parameters a The name of the INI file group that defines the
destination system/compiler alignment parameters
(see “Translation Rules” on the next page).

source_size a The length in bytes of the source message in the
source buffer.

source a The address of the source buffer that contains the
message that needs to be translated.

maximum_target_size a The maximum length of the target buffer.
NetWeave will not translate a message that
exceeds the buffer size.

target a The address of the target buffer that will contain
the translated message.

return_size a The actual length in bytes of the translated
message.

NetWeave API Reference Manual Version 2.0

January 2003 24

Return Codes (output)

Return code Description

NWDS_SUCCESSFUL The call completed successfully.

NWDS_DATA_OVERFLOW Translation terminated at the maximum target size. Increase
the size of the destination buffer and try again.

NWDS_BAD_PARAMETER The supplied DDL message name does not exist in the
application’s INI file. Locate the proper DDL definition and
try again.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

Translation Rules

NetWeave uses alignment rules to map data types to physical storage for a particular compiler and/or
system. The alignment rules also specify how the data types will be mapped in physical storage relative
to each other.

For each system and compiler involved in message exchange, you must add an alignment (rules) group
to your INI file. The rules group contains the following required parameters:

Parameter Default Description

SYSTEM_TYPE None The system identification value from the enum class in
netweave.h

CHAR_ALIGNMENT 1 The number of bytes between the address boundaries of
successive byte fields.

CHAR_SIZE 1 Size, in bytes of a character data element.

SHORT_ALIGNMENT 2 The number of bytes between the address boundaries of
successive short integer fields.

SHORT_SIZE 2 The number of bytes to store an integer of type SHORT.

LONG_ALIGNMENT 4 The number of bytes between the address boundaries of
successive long integer fields.

LONG_SIZE 4 The number of bytes to store an integer of type LONG.

The example below shows how to configure your INI file to use these special translation features.
Assume that the source system is a PC with 32-bit architecture and compiler, and the destination system
is a legacy service application on a remote platform (a Tandem host). The PC sends a request message
to the host and receives a reply message.

NOTE: Because the PC aligns short integers on 32-bit boundaries; we override the default short
alignment rule for the PC. (The alignment rule offsets the second field in the reply to the fourth
byte position for the PC, and to the second byte position for the host.)

NetWeave API Reference Manual Version 2.0

January 2003 25

[REQUEST_MESSAGE]
DDL_ENTRY = 1
DDL_FIELD_COUNT = 3
DDL_FIELD_1 = CHAR 3
DDL_FIELD_2 = SHORT 2
DDL_FIELD_3 = LONG 4

[REPLY_MESSAGE]
DDL_ENTRY = 1
DDL_FIELD_COUNT = 2
DDL_FIELD_1 = CHAR 1
DDL_FIELD_2 = SHORT 2

[PC_RULES]
SYSTEM_TYPE = NWDS_MS_WIN32
SHORT_ALIGNMENT = 4

[HOST_RULES]
SYSTEM_TYPE = NWDS_NONSTOP_WIDE

Related Functions

nwds_convert_data on page 20.

NetWeave API Reference Manual Version 2.0

January 2003 26

NetWeave API Reference Manual Version 2.0

January 2003 27

NWDS_DISPATCHER_CREATE

This function creates a Dispatcher and returns a handle that may be used on subsequent Dispatcher
operations such as nwds_dispatcher_stats and nwds_dispatcher_stop. The
nwds_dispatcher_create function is included in all NetWeave releases. The call is synchronous
and does not take an item list or callback.

The process of creating a Dispatcher also creates an internal NetWeave thread known as the boss
thread. After creating the boss thread, NetWeave creates additional application threads called “worker”
threads. The Dispatcher threads process messages from remote client applications. When a new client
attaches to the Dispatcher thread, a new worker thread is created to service this client. The worker
thread procedure has one parameter (applcontext) that stores the program’s context.

The boss thread acts as the intermediary between the external client and the worker threads until one of
them terminates its connection with the boss. The boss then terminates the connection to the other.

typedef void (NWDS_APPLTHREAD_PROC) (void *);

NWDS_ERRNO nwds_dispatcher_create
 (char *ext_pub_name,
 char *int_pub_name,
 char *ctrl_pub_name,
 void *applcontext,
 NWDS_HANDLE *dispatcher_handle,
 NWDS_APPLTHREAD_PROC worker_thread);

Parameter Input Output Description

ext_pub_name
a

The publish name to which remote client applications
connect. The publish name (a NULL-terminated string) is
a protocol group in the application's INI file.

int_pub_name
a

The internal publish name that a worker thread uses to
communicate with the boss thread. This logical name (a
NULL-terminated string) is a protocol group in the
application's INI file.

ctrl_pub_name
a

The publish name that an external program uses to send
management requests to the boss thread. The boss
thread can return statistics and be instructed to shut
down gracefully. The public name (a NULL-terminated
string) is a protocol group in the application's INI file.

applcontext
a

The address of a context area that is passed to each
worker thread upon startup.

dispatcher_handle
 a

The address where the handle for the control connection
will be stored. nwds_dispatcher_stats and
nwds_dispatcher_stop use this handle as a parameter.

worker_thread
a

A pointer to the worker thread's processing routine of
type NWDS_APPLTHREAD_PROC.

NetWeave API Reference Manual Version 2.0

January 2003 28

Return Code (output)

Return code Description

NWDS_SUCCESSFUL The call completed successfully.

NWDS_BAD_PARAMETER You are trying to call a function but one of your parameters
is out of range.

NWDS_NO_MEMORY Could not allocate enough memory to pass parameters to
the boss thread.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_NOTHREAD Could not create a boss thread. Platform is not threaded.

NWDS_OPERATION_FAILED The call did not complete successfully.

Related Functions

nwds_dispatcher_stats on page 30.

nwds_dispatcher_stop on page 32.

NetWeave API Reference Manual Version 2.0

January 2003 29

NetWeave API Reference Manual Version 2.0

January 2003 30

NWDS_DISPATCHER_STATS

This function, which is included in all NetWeave releases, retrieves the following statistics from the
Dispatcher:

• The number of active worker threads
• The number of messages transmitted and received since startup

The nwds_dispatcher_stats call is synchronous and does not take an item list.

NWDS_ERRNO nwds_dispatcher_stats
 (NWDS_HANDLE dispatcher_handle,
 int *num_threads,
 int *num_messages);

Parameter Input Output Description

dispatcher_handle a The handle returned from nwds_dispatcher_create.

num_threads a The address of an integer that will receive the
number of active worker threads associated with the
dispatcher_handle.

num_messages a The address of an integer that will receive the
number of messages that have passed through the
boss thread.

Return Code (output)

Return code Description

NWDS_BAD_PARAMETER NULL pointers were passed as arguments.

NWDS_NO_MEMORY Could not allocate enough memory to pass parameters to the
boss thread.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOTHREAD Could not create a boss thread. Platform is not threaded.

NWDS_OPERATION_FAILED The call did not complete successfully.

NWDS_SUCCESSFUL The call completed successfully.

Related Functions

nwds_dispatcher_create on page 27.

nwds_dispatcher_stop on page 32.

NetWeave API Reference Manual Version 2.0

January 2003 31

NetWeave API Reference Manual Version 2.0

January 2003 32

NWDS_DISPATCHER_STOP

This function, which is included in all NetWeave releases, terminates a Dispatcher created by
nwds_dispatcher_create. The nwds_dispatcher_stop call is synchronous and does not
take an item list.

NWDS_ERRNO nwds_dispatcher_stop
 (NWDS_HANDLE dispatcher_handle);

Parameter Input Output Description

dispatcher_handle a The handle that nwds_dispatcher_create returns.

Return Code (output)

Return code Description

NWDS_BAD_PARAMETER NULL pointers were passed as arguments.

NWDS_NO_MEMORY Could not allocate enough memory to pass parameters to the
boss thread.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

NWDS_NOTHREAD Could not create a boss thread. Platform is not threaded.

NWDS_OPERATION_FAILED The call did not complete successfully.

NWDS_SUCCESSFUL The call completed successfully.

Related Functions

nwds_dispatcher_create on page 27.

nwds_dispatcher_stats on page 30.

NetWeave API Reference Manual Version 2.0

January 2003 33

NetWeave API Reference Manual Version 2.0

January 2003 34

NWDS_ERROR_TEXT

This function, which is included in all NetWeave releases, converts a NetWeave status code into a text
string. The nwds_error_text call is synchronous and does not take an item list.

NWDS_ERRNO nwds_error_text
 (NWDS_ERRNO status_code,
 char *text_string);

Parameter Input Output Description

status_code a A value returned from a NetWeave function call.

text_string
 a

A line of text (a NULL-terminated string) that tells users
what the status code means.

Return Code (output)

Return code Description

NWDS_SUCCESSFUL The call completed successfully.

NWDS_BAD_PARAMETER Status code represents a non-NetWeave error code.

Related Functions

nwds_msglog on page 126.

NetWeave API Reference Manual Version 2.0

January 2003 35

NetWeave API Reference Manual Version 2.0

January 2003 36

NWDS_EXECUTE

This function starts a process on a designated system, and completes when the process starts. If the
process starts successfully, use the return_list item list to find out more about it. If the process
fails to start, the return code tells you why. The nwds_execute function is included in all NetWeave
releases.

NOTE: To stop a process started by nwds_execute, use nwds_stop.

To execute a process on a remote system, you can use either nwds_batch or nwds_execute. If the
process will do something and then stop, use nwds_batch. If the process runs in the background, or
needs to continue running indefinitely, use nwds_execute.

NWDS_ERRNO nwds_execute
 (char *image_name,
 NWDS_ITEM_LIST *control_list,
 NWDS_ITEM_LIST *return_list,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

image_name
a

The name (a NULL-terminated string) of the executable file you
want to run, either a logical name or a physical name
expressed in the syntax of the target system.

If it’s a logical name, a group in the process INI file must
contain a translation to a physical name.
The first part of the physical name may be the NetWeave node
name of the target system where the file is located. If there is
no node prefix, NetWeave looks for the file on the local system.

control_list
a

A pointer to an array of system-specific runtime parameters.
(See “The Control_list Parameters” on the next page.)

return_list
 a

A pointer to an array of system-specific parameters that
describe the program (job). For more information, see “Using
Return_list to Stop a Remote Process” on page 38.

call_back
a

A pointer to a callback structure that contains the function that
will be called when nwds_execute completes. If NULL, the call
is synchronous.

NetWeave API Reference Manual Version 2.0

January 2003 37

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

For more information about the return codes, see page 229.

The Control_List Parameters

(For CICS only) To write to a queue, use NWDS_CICS_QUEUE and NWDS_CICS_REQ_DATA. Use
the other NWDS_CICS parameters with EXEC CICS START.

The table below lists the system-specific control_list runtime parameters:

Platform Parameter Description

NWDS_CICS_IMAGE_FLAG A long; indicates whether you are writing to
TDQ or using CICS START.

NWDS_CICS_REQID A string; REQID field value.

NWDS_CICS_REQ_DATA An array of bytes; the data to pass to the task.

NWDS_CICS_REQ_FLAG A long; flag if data has FMH format.

NWDS_CICS_TIME_FLAG A long; flag AFTER or AT time.

NWDS_CICS_HOURS A long; hours value.

NWDS_CICS_MINUTES A long; minutes value.

NWDS_CICS_SECONDS A long; seconds value.

NWDS_CICS_RTRANSID A string; RTRANSID to pass to started task.

NWDS_CICS_RTERMID A string; RTERMID to pass to started task.

MVS/CICS

NWDS_CICS_QUEUE A string; queue name to pass to started task.

NWDS_VMS_DELAY_TIME A long; the number of seconds to wait after
sys$creprc finishes testing that the process is
still active.

NWDS_VMS_DETACHED A long; if it is non-zero, run the job in the
background.

NWDS_VMS_PRIORITY An integer; the priority at which the job runs.

NWDS_VMS_PROCESS_NAME A byte array; the name of the process.

DEC

NWDS_VMS_WAIT_ATTEMPTS Not currently used.

(continued)

NetWeave API Reference Manual Version 2.0

January 2003 38

Platform Parameter Description

NWDS_TAN_ASSIGNMSG A byte array; you may define more than one
Guardian assign message.

NWDS_TAN_HOMETERM A byte array; the home terminal of the process is
the default for stdin, stdout, and stderr.

NWDS_TAN_MEMORYPAGES An integer; the initial allocation of memory.

NWDS_TAN_PARAMMSG A byte array; a Guardian param message (you
may define more than one).

NWDS_TAN_PRIORITY An integer; the priority assigned to the process.

NWDS_TAN_PROCESSNAME A string; this is returned in the return_list, and may
be passed to nwds_stop.

NWDS_TAN_PROCESSOR An integer; the CPU in which the process will start.

Tandem

NWDS_TAN_STARTUPMSG A byte array; the process' startup message.

NWDS_UNIX_COMMAND_ARGS A string; the runtime command arguments. UNIX

NWDS_UNIX_RETURN_PID A string; this is returned in the return_list and may
be passed to nwds_stop.

NWDS_WIN32_COMMAND_ARGS A string; the runtime command arguments. WIN32

NWDS_WIN32_RETURN_PID A string; this is returned in the return_list and may
be passed to nwds_stop.

Using Return_list to Stop a Remote Process

To stop a remote process, whether started with nwds_execute or not, you must include the following
parameter(s) in the return_list:

Platform Parameter Description

NWDS_VMS_RETURN_NAME A byte array; the name you passed as
VMS_PROCESS_NAME.

DEC

NWDS_VMS_RETURN_PID A long integer; the VMS process ID.

Tandem NWDS_TAN_PROCESSNAME A string, in the format for passing to
nwds_stop.

UNIX NWDS_UNIX_RETURN_PID A string, in the format for passing to
nwds_stop.

WIN32 NWDS_WIN32_RETURN_PID A string, in the format for passing to
nwds_stop.

NetWeave API Reference Manual Version 2.0

January 2003 39

NOTE: The underlying operating system call determines how nwds_execute works. On some
systems, this call may return true even if the process did not really start. For example, on an VMS
system, if the process has quota or privilege problems, nwds_execute will return
NWDS_SUCCESSFUL even if the process did not start successfully.

Related Functions

nwds_batch on page 18

NetWeave API Reference Manual Version 2.0

January 2003 40

NetWeave API Reference Manual Version 2.0

January 2003 41

NWDS_EXIT

This function, which is included in all NetWeave releases, shuts down any open connections and
releases all system resources. On some systems (such as Windows running TCP/IP), if you do not call
nwds_exit, NetWeave can’t tell the TCP/IP device driver to free any socket handles that NetWeave
may have allocated.

NOTE: Before calling nwds_init again for any reason, you must first call nwds_exit.
If you don’t, you will have memory leaks within the NetWeave application.

NWDS_ERRNO nwds_exit (void);

Return Code (output)

If nwds_exit returns a value other than NWDS_SUCCESSFUL, there was an unrecoverable system
error.

Related Functions

nwds_sleep on page 136.

nwds_sleep_callback on page 138.

nwds_sleep_clear_callback on page 141.

nwds_stop on page 164.

nwds_timer_start on page 169.

nwds_timer_stop on page 172.

NetWeave API Reference Manual Version 2.0

January 2003 42

NetWeave API Reference Manual Version 2.0

January 2003 43

NWDS_FILE_CLOSE

This function closes a file opened by an earlier call to nwds_file_open. The nwds_file_close
function is provided as part of NetWeave’s Data Server and/or Message Queueing options.

NOTE: Any files that nwds_file_open opens will be closed automatically when the
application terminates, or if you call nwds_exit.

NWDS_ERRNO nwds_file_close
 (NWDS_HANDLE file_handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

file_handle a The handle returned from a call to nwds_file_open.

control_items
a

Because nwds_file_close does not use control items,
control_items should be set to NULL.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_SUCCESSFUL The call completed successfully.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

NWDS_NO_MEMORY The system is overloaded; process out of memory.

NWDS_PENDING The operation has been initiated successfully. Final status and
data will be delivered to the specified callback function.

For more information about the return codes, see page 229.

Related Functions

nwds_file_copy on page 46.

nwds_file_create on page 48.

nwds_file_delete on page 52.

NetWeave API Reference Manual Version 2.0

January 2003 44

nwds_file_info on page 55.

nwds_file_open on page 59.

nwds_file_position on page 63.

nwds_file_read on page 67.

nwds_file_remove on page 70.

nwds_file_update on page 73.

nwds_file_write on page 76.

NetWeave API Reference Manual Version 2.0

January 2003 45

NetWeave API Reference Manual Version 2.0

January 2003 46

NWDS_FILE_COPY

The nwds_file_copy function copies a file from one system to another. This function is provided as
part of NetWeave’s File Transfer option.

You may use nwds_file_copy to transfer both text files and binary images. If the INI file contains
DDL entries for the file, the data may be converted. Use record blocking to optimize transfer through
the communications layer. Text files are created on the destination system in a format compatible with
that system’s standard text editor (nwds_file_copy does not overwrite non-empty destination files).

NWDS_ERRNO nwds_file_copy
 (char *source_file_name,
 NWDS_ITEM_LIST *source_items,
 char *destination_file_name,
 NWDS_ITEM_LIST *destination_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

source_file_name
a

The name (a NULL-terminated string) of the file you
want to copy. The name can be either a logical name, or
a physical file name expressed in the syntax of the
target system.
If it’s a logical name, a group in the process INI file must
contain a translation to a physical name.
The first part of the physical name may be the
NetWeave node name of the target system from which
the file will be copied. If there is no node prefix,
NetWeave looks for the file on the local system.

source_items
a

A pointer to an array of system-specific parameters.
See “Considerations” on the next page.

destination_file_name
a

The name (a NULL-terminated string) of the new file,
either a logical name or a physical file name expressed
in the syntax of the target system.
If it’s a logical name, a group in the process INI file must
contain a translation to a physical name.
The first part of the physical name may be a NetWeave
node name of the system to which the file will be copied.
If there is no node prefix, NetWeave looks for the file on
the local system. If the destination file does not exist,
NetWeave creates the destination file.

destination_items
a

A pointer to a system-specific parameter.
See “Considerations” on the next page.

call_back
a

A pointer to the callback structure.
If NULL, the call is synchronous.

NetWeave API Reference Manual Version 2.0

January 2003 47

Return Code (output)

Return code Description

NWDS_SUCCESSFUL The call completed successfully.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_NO_MEMORY The system is overloaded; process out of memory.

NWDS_PENDING The operation has been initiated successfully. Final status
and data will be delivered to the specified callback function.

For more information about the return codes, see page 229.

Example

Windows copying a file from Tandem to Alpha/VMS:

 nwds_file_copy (
 “TANDEM::fileA”,
 source_items,
 “VAX::fileB”,
 target_items,
 NULL);

Considerations

The source_items parameters specify the source platform’s file format (NWDS_FILE_BLOCKING)
and a valid file type (NWDS_FILE_TYPE).

Source_items parameter Value Description

NWDS_FILE_BLOCKING_ON NetWeave blocks logical records
into physical records.

NWDS_FILE_BLOCKING

NWDS_FILE_BLOCKING_OFF No blocking is done.

NWDS_FILE_TYPE_C C file

NWDS_FILE_TYPE_FIFO FIFO file

NWDS_FILE_TYPE

NWDS_FILE_TYPE_LEGACY Legacy file (system-dependent)

NetWeave API Reference Manual Version 2.0

January 2003 48

The NWDS_FILE_TYPE value in turn determines which items are returned, as shown below:

Type NetWeave definition Description

NWDS_CFILE_SHARING A logical value that defines the access mode:
NWDS_CFILE_READ_WRITE: read and write access

NWDS_CFILE_READ_ONLY: read-only access

NWDS_CFILE_WRITE_ONLY: write-only access

NWDS_CFILE_APPEND: write to the end of the file

C Files

NWDS_CFILE_FORMAT A logical value that characterizes the file:
NWDS_CFILE_TEXT: newline delineated text not
necessarily printable; uses fgets, fputs

NWDS_CFILE_BINARY: no format; uses fwrite, fread

NWDS_CFILE_VARIABLE: NetWeave special file type;
each record consists of a 2-byte length followed by data

FIFO NWDS_FIFO_SHARING A logical that defines what to do after a message is read:

NWDS_FIFO_READ_HOLD_POS: the current pointer is
not updated after a read

NWDS_FIFO_READ_NEW_POS: the current pointer is
changed after a read

NWDS_FIFO_APPEND_ONLY: messages are added to
the end of the file

Legacy If you need to copy legacy files between proprietary file systems, see netweave.h for
system-specific features.

For the destination system in the copy operation, destination_items is analogous to
source_items.

Related Functions

nwds_file_close on page 43.

nwds_file_create on page 48.

nwds_file_delete on page 52.

nwds_file_info on page 55.

nwds_file_open on page 59.

nwds_file_position on page 63.

nwds_file_read on page 67.

nwds_file_remove on page 70.

nwds_file_update on page 73.

nwds_file_write on page 76.

NetWeave API Reference Manual Version 2.0

January 2003 49

NWDS_FILE_CREATE

The nwds_file_create function creates a file. To define the new file’s characteristics, you need a
properly formatted item list. With an appropriate item list, nwds_file_create can construct any
file type on the target system. The nwds_file_create function is provided as part of NetWeave’s
Data Server and/or Message Queueing options.

NWDS_ERRNO nwds_file_create
 (char *file_name,
 NWDS_ITEM_LIST *control_items,]
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

file_name
a

The name (a NULL-terminated string) of the file you want
to create. The name can be either a logical name, or a
physical file name expressed in the syntax of the target
system.
If it’s a logical name, a group in the process INI file must
contain a translation to a physical name.

The first part of a physical name may be the NetWeave
node name of the target system where the file will be
created. If there is no node prefix, NetWeave will try to
create the file on the local system.

control_items
a

A pointer to system-specific parameters that specify the
file type and its characteristics. See “Considerations”
below.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 50

Considerations

The control_items parameter contains one of more of the following system-specific parameters
that indicate a valid file type, NWDS_FILE_TYPE, for the destination platform:

• NWDS_FILE_TYPE_C (C file)

• NWDS_FILE_TYPE_FIFO (FIFO file)

• NWDS_FILE_TYPE_LEGACY (Legacy file, system-dependent)

Type NetWeave definition Description

C file NWDS_CFILE_EOF A long; the number of bytes in the file.

NWDS_FIFO_MAX_SEGMENTS An integer; the number of segments in the file. FIFO

NWDS_FIFO_SEGMENT_SIZE An integer; the number of bytes in a segment.

Legacy For system-specific features when creating a legacy file in a proprietary file system,
please see netweave.h.

Related Functions

nwds_file_close on page 43.

nwds_file_copy on page 46.

nwds_file_delete on page 52.

nwds_file_info on page 55.

nwds_file_open on page 59.

nwds_file_position on page 63.

nwds_file_read on page 67.

nwds_file_remove on page 70.

nwds_file_update on page 73.

nwds_file_write on page 76.

NetWeave API Reference Manual Version 2.0

January 2003 51

NetWeave API Reference Manual Version 2.0

January 2003 52

NWDS_FILE_DELETE

This function deletes the record or row entry at the current file position. The nwds_file_delete
function is provided as part of NetWeave’s Data Server option.

NWDS_ERRNO nwds_file_delete
 (NWDS_HANDLE file_handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

file_handle a The handle returned from a call to nwds_file_open.

control_items
a

A pointer to an array of system-specific parameters.
To ensure transaction protection for Tandem, use
NWDS_TP_HANDLE with a TP handle that was returned
from a call to NWDS_TP_START.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

For more information about the return codes, see page 229.

Related Functions

nwds_file_close on page 43.

nwds_file_copy on page 46.

nwds_file_create on page 48.

nwds_file_info on page 55.

nwds_file_open on page 59.

nwds_file_position on page 63.

NetWeave API Reference Manual Version 2.0

January 2003 53

nwds_file_read on page 67.

nwds_file_remove on page 70.

nwds_file_update on page 73.

nwds_file_write on page 76.

NetWeave API Reference Manual Version 2.0

January 2003 54

NetWeave API Reference Manual Version 2.0

January 2003 55

NWDS_FILE_INFO

This function retrieves the information you requested about a particular file. The file does not have to be
open. The nwds_file_info function is provided as part of NetWeave’s Data Server and/or
Message Queue options.

Before the call, to specify which information you need from the file, place the types of the requested
items in the return_items list structure. If the call is asynchronous, use persistent memory to
receive the values of the requested information. Do not declare return items on the local stack. Place the
addresses of these locations for the returned information in the item list. When the function call
completes, NetWeave copies the values of the items to the specified locations.

NWDS_ERRNO nwds_file_info
 (char *file_name,
 NWDS_ITEM_LIST *control_items,
 NWDS_ITEM_LIST *return_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

file_name
a

The name (a NULL-terminated string) of the file whose
information you want to retrieve. The name can be either a
logical name, or a physical file name expressed in the syntax
of the target system.
If it’s a logical name, a group in the process INI file must
contain a translation to a physical name.

The first part of a physical name may be the NetWeave node
name of the target system where the file is located. If there is
no node prefix, NetWeave looks for the file on the local
system.

control_items
a

A pointer to an array of system-specific parameters that
modify the default operation of this function. For more
information, see “Considerations” on the next page.

return_items
 a

A pointer to an array of system-specific parameters.
See “Considerations” on the next page.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

NetWeave API Reference Manual Version 2.0

January 2003 56

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

For more information about the return codes, see page 229.

Considerations

For control_items, the NWDS_FILE_TYPE determines which items are returned:

• NWDS_FILE_TYPE_C (C file)

• NWDS_FILE_TYPE_FIFO (FIFO file)

• NWDS_FILE_TYPE_LEGACY (Legacy file, system-dependent)

Each file type can return the following:

File type NetWeave definition Description

C file NWDS_CFILE_EOF The number of bytes in the file.

NWDS_FIFO_DATA_SIZE Number of bytes in a segment (the same as
the value NWDS_FIFO_SEGMENT_SIZE
provided in NWDS_FILE_CREATE).

NWDS_FIFO_SEGMENT_COUNT Number of segments in use in a queue.

NWDS_FIFO_NUMBER_RECORDS Number of logical records (not segments) in
the queue.

FIFO

NWDS_FIFO_FREE_SEGMENTS Number of free segments in a queue.

Legacy For system-specific features when querying legacy files in a proprietary file system,
please see netweave.h.

Related Functions

nwds_file_close on page 43.

nwds_file_copy on page 46.

nwds_file_create on page 48.

nwds_file_delete on page 52.

nwds_file_open on page 59.

NetWeave API Reference Manual Version 2.0

January 2003 57

nwds_file_position on page 63.

nwds_file_read on page 67.

nwds_file_remove on page 70.

nwds_file_update on page 73.

nwds_file_write on page 76.

NetWeave API Reference Manual Version 2.0

January 2003 58

NetWeave API Reference Manual Version 2.0

January 2003 59

NWDS_FILE_OPEN

This function opens a file using its logical or physical name. The file type and the system on which the
file resides determine how a file is opened. To set any other file open conditions, use an item list with
item types and values appropriate for the target file system.

The nwds_file_open function is provided as part of NetWeave’s Data Server and/or Message
Queue options.

NWDS_ERRNO nwds_file_open
 (char *file_name,
 NWDS_HANDLE *file_handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

file_name
a

The name (a NULL-terminated string) of the file you want
to open. The name may be either a logical name, or a
physical file name expressed in the syntax of the target
system.
If it’s a logical name, a group in the process INI file must
contain a translation to a physical name.

The first part of a physical name may be the NetWeave
node name of the target system where the file is located. If
there is no node prefix, NetWeave will look for the file on
the local system.

file_handle a The identifier to use for subsequent operations on this file.

control_items
a

A pointer to an array of system-specific parameters. For
more information, see “Considerations” on the next page.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_PENDING The operation was initiated successfully. Final status and
data will be delivered to the specified callback function.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 60

Considerations

The control_items parameter points to the parameters that specify the source platform’s file format
(NWDS_FILE_BLOCKING) and valid file type (NWDS_FILE_TYPE).

control_items parameter Value Description

NWDS_FILE_BLOCKING_ON NetWeave blocks logical records
into physical records.

NWDS_FILE_BLOCKING

NWDS_FILE_BLOCKING_OFF No blocking is done.

NWDS_FILE_TYPE_C C file

NWDS_FILE_TYPE_FIFO FIFO file

NWDS_FILE_TYPE

NWDS_FILE_TYPE_LEGACY Legacy file (system-dependent)

The NWDS_FILE_TYPE value determines which items are returned, as shown below:

Type NetWeave definition Description

NWDS_CFILE_SHARING A logical; defines the access mode:
NWDS_CFILE_READ_WRITE: read and write access

NWDS_CFILE_READ_ONLY: read-only access

NWDS_CFILE_WRITE_ONLY: write-only access

NWDS_CFILE_APPEND: write to the end of the file

C Files

NWDS_CFILE_FORMAT A logical; characterizes the file:

NWDS_CFILE_TEXT: newline delineated text, not
necessarily printable; uses fgets, fputs

NWDS_CFILE_BINARY: no format; uses fwrite, fread

NWDS_CFILE_VARIABLE: a NetWeave special file
type, where each record consists of a 2-byte length
followed by the data

FIFO NWDS_FIFO_SHARING A logical; defines what to do after a message is read:
NWDS_FIFO_READ_HOLD_POS: the current pointer
is not updated after a read.

NWDS_FIFO_READ_NEW_POS: the current pointer is
changed after a read.

NWDS_FIFO_APPEND_ONLY: messages are added
to the end of the file.

Legacy For system-specific features when querying legacy files in a proprietary file system,
please see netweave.h.

NetWeave API Reference Manual Version 2.0

January 2003 61

Related Functions

nwds_file_close on page 43.

nwds_file_copy on page 46.

nwds_file_create on page 48.

nwds_file_delete on page 52.

nwds_file_info on page 55.

nwds_file_position on page 63.

nwds_file_read on page 67.

nwds_file_remove on page 70.

nwds_file_update on page 73.

nwds_file_write on page 76.

NetWeave API Reference Manual Version 2.0

January 2003 62

NetWeave API Reference Manual Version 2.0

January 2003 63

NWDS_FILE_POSITION

This function sets or resets the record position in the file. The nwds_file_position function is
provided as part of NetWeave’s Data Server and/or Message Queue options.

The parameters for setting the pointer are passed in the control item list structure. For certain types of
files, nwds_file_position can return information about the current record pointer or file
position. Before making the call, place the types of the items for which you are requesting information
in the return item list structure. When the call returns, the values of the items are copied to the
designated item locations. For more information, see nwds_file_info on page 55.

For message queues, if you call nwds_file_position with an empty item list, it advances the head
pointer of a message queue. For more information about transaction processing with message queues,
see “Message Queue Files” on page 193.

NWDS_ERRNO nwds_file_position
 (NWDS_HANDLE file_handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_ITEM_LIST *return_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

file_handle a The identifier returned from a call to nwds_file_open.

control_items
a

A pointer to an array of system-specific parameters. For
more information, see “Considerations” below.

return_items
 a

A pointer to an array of system-specific parameters. Include
in the return item list the types for which you want values to
be returned, and the addresses of locations to which values
will be copied. See “Considerations” below.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_PENDING The operation has been initiated successfully. Final status
and data will be delivered to the specified callback function.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 64

Considerations

For files that don’t have keys and indices, addressing can be done in either of two ways:

• For unstructured files (no concept of a record), use a relative byte address.
• For structured files, positioning is by relative record number. File position is system- and

filetype-specific.

For file structures with keys and indices, item types supported on the host platform can define an
individual record or the first of a sequential set of records. Although item types differ for each host, all
legacy file systems that support indexed access use an item type to specify each of the following:

• Which index to use
• Which key value to compare
• How to compare the key with the keys in the record set

The control_items parameter gives NetWeave additional information about the exact posit ioning
requirements for the file system being accessed.

File type Name Description

NWDS_CFILE_FTELL A long; the current relative byte address in a
CFILE flat file.

NWDS_CFILE_SEEK_OFFSET A long; the new byte position relative to the
starting point specified by SEEK_TYPE.

NWDS_CFILE_SEEK_TYPE Tells which starting point to use.

NWDS_CFILE_SEEK_SET Start from the beginning of the file.

NWDS_CFILE_SEEK_CURRENT Start from the current byte position.

C Files

NWDS_CFILE_SEEK_END Start relative to the end of the file.

FIFO NWDS_FIFO_SEEK_OFFSET An integer; the number of messages to advance
or retreat. The default value is -1, as in “take 1
off”.
Use a positive value to reset the head pointer to
reread previous messages (put it back on the
queue). Use a negative value to remove
messages from the queue.

Legacy For system-specific features when querying legacy files in a proprietary file system,
please see netweave.h.

Related Functions

nwds_file_close on page 43.

nwds_file_copy on page 46.

nwds_file_create on page 48.

nwds_file_delete on page 52.

NetWeave API Reference Manual Version 2.0

January 2003 65

nwds_file_info on page 55.

nwds_file_open on page 59.

nwds_file_read on page 67.

nwds_file_remove on page 70.

nwds_file_update on page 73.

nwds_file_write on page 76.

NetWeave API Reference Manual Version 2.0

January 2003 66

NetWeave API Reference Manual Version 2.0

January 2003 67

NWDS_FILE_READ

This function retrieves the record or row at the current file pointer. The nwds_file_read function
is provided as part of NetWeave’s Data Server and/or Message Queue options.

Where supported, record locking is indicated in an item type passed in the item list structure. If an
empty item list is passed, the record is not locked. Depending on the properties of the underlying file
system, NetWeave may return the argument to the callback for asynchronous invocations of
nwds_file_read. Some hosts support read-only access that bypasses another user's lock. To lock or
unlock a record, please see netweave.h for specific information for each platform and type of file
structure.

NWDS_ERRNO nwds_file_read
 (NWDS_HANDLE file_handle,
 NWDS_SIZE buffer_size,
 void *buffer,
 NWDS_SIZE *return_size,
 NWDS_ITEM_LIST *control_items,
 NWDS_ITEM_LIST *return_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

file_handle a The identifier returned from a call to nwds_file_open.

buffer_size
a

The maximum number of bytes that may be copied to the
buffer (next parameter). For a record-oriented file, one
record is read from the file. If it is bigger than buffer_size,
NWDS_DATA_OVERFLOW is returned and no data is
transferred. For a flat file, up to buffer_size bytes are
read from the file.

buffer a The address of the array where the record is returned.

return_size a The actual number of bytes copied to the buffer.

control_items
a

A pointer to an array of system-specific parameters.
When positioning to records in files in proprietary file
systems, see netweave.h for system-specific features
that affect how the control_items parameter is used.

return_items
 a

A pointer to an array of system-specific parameters. In
the return item list, include the types for which values will
be returned and the addresses of locations to which
values will be copied.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

NetWeave API Reference Manual Version 2.0

January 2003 68

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

If another user locks the record, the error NWDS_RECORD_IS_LOCKED is returned. NetWeave does
not wait for the record to become unlocked. For more information about the return codes, see page 229.

Related Functions

nwds_file_close on page 43.

nwds_file_copy on page 46.

nwds_file_create on page 48.

nwds_file_delete on page 52.

nwds_file_info on page 55.

nwds_file_open on page 59.

nwds_file_position on page 63.

nwds_file_remove on page 70.

nwds_file_update on page 73.

nwds_file_write on page 76.

NetWeave API Reference Manual Version 2.0

January 2003 69

NetWeave API Reference Manual Version 2.0

January 2003 70

NWDS_FILE_REMOVE

This function deletes a remote file. It fails if any process has the file open. The nwds_file_remove
function is provided as part of NetWeave’s Data Server and/or Message Queue options.

NWDS_ERRNO nwds_file_remove
 (char *file_name,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

file_name
a

The name (a NULL-terminated string) of the file to
remove. The name may be either a logical name, or a
physical file name expressed in the syntax of the target
system.

If it’s a logical name, a group in the process INI file must
contain a translation to a physical name.
The first part of a physical name may be a NetWeave
node name that indicates the target system where the file
is located. If there is no node prefix, NetWeave will look
for the file on the local system.

control_items
a

A pointer to an array of system-specific parameters. Use
control_items to specify the type of file
(NWDS_FILE_TYPE) you intend to remove:

• NWDS_FILE_TYPE_C (C file)
• NWDS_FILE_TYPE_FIFO (FIFO file)
• NWDS_FILE_TYPE_LEGACY (Legacy file, system-

dependent)

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 71

Related Functions

nwds_file_close on page 43.

nwds_file_copy on page 46.

nwds_file_create on page 48.

nwds_file_delete on page 52.

nwds_file_info on page 55.

nwds_file_open on page 59.

nwds_file_position on page 63.

nwds_file_read on page 67.

nwds_file_update on page 73.

nwds_file_write on page 76.

NetWeave API Reference Manual Version 2.0

January 2003 72

NetWeave API Reference Manual Version 2.0

January 2003 73

NWDS_FILE_UPDATE

This function changes the data fields in an existing record or row. The nwds_file_update function
is provided as part of NetWeave’s Data Server option.

NWDS_ERRNO nwds_file_update
 (NWDS_HANDLE file_handle,
 NWDS_SIZE buffer_size,
 void *buffer,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

file_handle a The handle returned from a call to nwds_file_open.

buffer_size
a

The number of bytes to be copied from the buffer (next
parameter in this table, below).

For a record-oriented file, if you try to exceed the
maximum record size specified for the file, NetWeave
returns NWDS_DATA_OVERFLOW. For a flat file,
buffer_size bytes are replaced in the file.

buffer a The address of the array that contains the changed data.

control_items a A pointer to an array of system-specific parameters.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

If another user locks the record, the error NWDS_RECORD_IS_LOCKED is returned. NetWeave does
not wait for the record to become unlocked. For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 74

Related Functions

nwds_file_close on page 43.

nwds_file_copy on page 46.

nwds_file_create on page 48.

nwds_file_delete on page 52.

nwds_file_info on page 55.

nwds_file_open on page 59.

nwds_file_position on page 63.

nwds_file_read on page 67.

nwds_file_remove on page 70.

nwds_file_write on page 76.

NetWeave API Reference Manual Version 2.0

January 2003 75

NetWeave API Reference Manual Version 2.0

January 2003 76

NWDS_FILE_WRITE

This function adds a new record to a file or a row to a table. The nwds_file_write function is
provided as part of NetWeave’s Data Server and/or Message Queue options.

NWDS_ERRNO nwds_file_write
 (NWDS_HANDLE file_handle,
 NWDS_SIZE buffer_size,
 void *buffer,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

file_handle a The handle returned from a call to nwds_file_open.
NOTE: To use nwds_file_open, you must have the Data
Server option.

buffer_size
a

The number of bytes to be copied from the buffer (the
next parameter, below). For a record-oriented file, if you
try to exceed the maximum record size specified for the
file, NWDS_DATA_OVERFLOW is returned. For a flat file,
buffer_size bytes are appended to the file.

buffer a The address of the array that contains the new data.

control_items a A pointer to an array of system-specific parameters.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For a record-oriented file, the error NWDS_DUPLICATE_KEY is returned when you try to write a
record that contains a key value that matches one for an index that does not permit duplicates. For more
information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 77

Related Functions

nwds_file_close on page 43.

nwds_file_copy on page 46.

nwds_file_create on page 48.

nwds_file_delete on page 52.

nwds_file_info on page 55.

nwds_file_open on page 59.

nwds_file_position on page 63.

nwds_file_read on page 67.

nwds_file_remove on page 70.

nwds_file_update on page 73.

NetWeave API Reference Manual Version 2.0

January 2003 78

NetWeave API Reference Manual Version 2.0

January 2003 79

NWDS_INI_DELETE_NAME

This function, which is included in all NetWeave releases, deletes a token statement from an
application’s user group. The token USER_NAME_GROUP identifies the calling application’s group in
the INI file. You can also use USER_NAME_GROUP = xxx to supply a different INI file group for
housing application-specific parameters. A token statement has the following syntax:

token = value

The nwds_ini_delete_name function does not modify the INI file, only the runtime contents of
the user group.

NWDS_ERRNO nwds_ini_delete_name
 (char *token_name);

Parameter Input Output Description

token_name
a

The name of the token to remove from the user group.
The name is a NULL-terminated string.

Return Code (output)

Return code Description

NWDS_NAME_NOT_FOUND An error occurred.

NWDS_SUCCESSFUL The token was removed.

For more information about the return codes, see page 229.

Related Functions

nwds_ini_get_name on page 81.

nwds_ini_put_name on page 86.

NetWeave API Reference Manual Version 2.0

January 2003 80

NetWeave API Reference Manual Version 2.0

January 2003 81

NWDS_INI_GET_INT

This function, which is included in all NetWeave releases, returns the numeric value from the specified
token statement from an application’s user group. The token USER_NAME_GROUP identifies the user
group in the application’s root group. A token statement has the following syntax:

token = value

The nwds_ini_get_int function does not access the INI file, just the values from the runtime
contents of the user group.

NWDS_ERRNO nwds_ini_get_int
 (char *lookup_name,
 int *returned_value,
 int default_value);

Parameter Input Output Description

lookup_name a The name of the token to be looked up. The name is a
NULL-terminated string.

returned_value a The token value.

default_value a If the lookup_name is not found, the returned_value is
set to default_value.

Return Code (output)

Return code Description

NWDS_NAME_NOT_FOUND An error occurred.

NWDS_BAD_PARAMETER The USER_NAME_GROUP was not specified or was
not found in the registered INI file

NWDS_DATA_OVERFLOW Supplied buffer was not large enough to hold value.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

NWDS_SUCCESSFUL The token was found.

For more information about the return codes, see page 229.

Related Functions

nwds_ini_delete_name on page 79.

NetWeave API Reference Manual Version 2.0

January 2003 82

nwds_ini_put_name on page 86.

NetWeave API Reference Manual Version 2.0

January 2003 83

NWDS_INI_GET_NAME

This function, which is included in all NetWeave releases, returns the value from the specified token
statement in an application’s user group. The token USER_NAME_GROUP identifies the user group in
the application’s root group. A token statement has the following syntax:

token = value

The nwds_ini_get_name function does not access the INI file, just the values from the runtime
contents of the user group.

NWDS_ERRNO nwds_ini_get_name
 (char *lookup_name,
 NWDS_SIZE buffer_size,
 char *returned_value);

Parameter Input Output Description

lookup_name a The name of the token to be looked up. The name is a
NULL-terminated string.

buffer_size a The maximum size allocated for the return string.

returned_value a The returned value associated with the lookup_name.

Return Code (output)

Return code Description

NWDS_NAME_NOT_FOUND An error occurred. Desired name not found.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

NWDS_BAD_PARAMETER The USER_NAME_GROUP was not specified or was
not found in the registered INI file

NWDS_DATA_OVERFLOW Supplied buffer was not large enough to hold value.

NWDS_SUCCESSFUL The token was found.

For more information about the return codes, see page 229.

Related Functions

nwds_ini_delete_name on page 79.

nwds_ini_put_name on page 86.

NetWeave API Reference Manual Version 2.0

January 2003 84

NetWeave API Reference Manual Version 2.0

January 2003 85

NetWeave API Reference Manual Version 2.0

January 2003 86

NWDS_INI_PUT_NAME

The nwds_ini_put_name function, which is included in all NetWeave releases, inserts a new token
statement in the application’s user group. The token USER_NAME_GROUP identifies the user group in
the application’s root group. A token statement has the following syntax:

token = value

The nwds_ini_put_name function does not access the INI file. Instead, it inserts new entries in the
runtime contents of the user group.

NWDS_ERRNO nwds_ini_put_name
 (char *token,
 char *value);

Parameter Input Output Description

token a The token name is a NULL-terminated string.

value a The value is a NULL-terminated string.

Return Code (output)

Return code Description

NWDS_NO_MEMORY The system is overloaded; process out of memory.

NWDS_SUCCESSFUL The token statement was added.

For more information about the return codes, see page 229.

Related Functions

nwds_ini_delete_name on page 79.

nwds_ini_get_name on page 81.

NetWeave API Reference Manual Version 2.0

January 2003 87

NetWeave API Reference Manual Version 2.0

January 2003 88

NWDS_INIT

This must be the first NetWeave function call for any program that uses the NetWeave API. The default
INI file name on platforms that support long file names is netweave.ini. The default for other file
systems is NWDSINI. The default group (or section) name is MAIN. The nwds_init function is
included in all NetWeave releases.

NWDS_ERRNO nwds_init
 (char *INI_file,
 char *INI_group);

Parameter Input Output Description

INI_file
a

The name (a NULL-terminated string) of the INI file for this
program. If your application uses a sequence of INI files,
this is the first one (called the root INI file) that NetWeave
will use to resolve names and find communications
parameters.

INI_group
a

The name of the group in the root INI file where NetWeave
begins its searches. The name is a NULL-terminated
string.

Return Code (output)

Return code Description

NWDS_FILE_NOT_FOUND There is no INI file with this name.

NWDS_OPERATION_FAILED The call did not complete successfully.

NWDS_SUCCESSFUL The call completed successfully.

If nwds_init returns an error, it is important not to call nwds_exit (nwds_init cleans up after
itself). For more information about the return codes, see page 229.

Related Functions

nwds_item_load_char on page 116.

nwds_item_load_handle on page 118.

nwds_item_load_long on page 120.

nwds_item_load_short on page 122.

NetWeave API Reference Manual Version 2.0

January 2003 89

NWDS_IPC_ACCEPT

To acknowledge that is has accepted a connection, the passive end of a connection (the server) calls
nwds_ipc_accept to complete the setup of a connection with a client application. The
nwds_ipc_accept function is included in all NetWeave releases.

If nwds_ipc_accept is called synchronously (i.e. completion=NULL), then the client_handle
is valid when NWDS_SUCCESSFUL is returned. Otherwise the client_handle is undefined and
invalid, but no further action is required to release the handle.

If nwds_ipc_accept is called asynchronously, the client_handle is not valid until the
completion callback is returned with NWDS_SUCCESSFUL. If an error is returned from either
nwds_ipc_accept or the callback function, then the handle is invalid, and it does not need to be
cleaned up via nwds_ipc_shutdown.

Applications that communicate as peers may send unsolicited messages to each other at any time. To
receive a message asynchronously whenever your partner sends one, you must specify the
data_received callback.

NWDS_ERRNO nwds_ipc_accept
 (NWDS_HANDLE server_handle,
 NWDS_HANDLE *client_handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *completion,
 NWDS_CALL_BACK *data_received);

Parameter Input Output Description

server_handle a The handle that nwds_ipc_publish returns.

client_handle
 a

The identifier associated with the new connection. Use
this identifier to write messages to the other application.

control_items a A pointer to an array of system-specific parameters.

completion
a

A pointer to a callback structure that contains the function
that will be called when nwds_ipc_accept completes. If
NULL, the call is synchronous.

data_received
a

A pointer to the callback to be called each time the
application receives a message from the other
application.
NOTE: If data_received=NULL, your application cannot
receive unsolicited messages and must call
nwds_ipc_read each time it is ready to process an
incoming message. nwds_ipc_read will then suspend
until data is available.

NetWeave API Reference Manual Version 2.0

January 2003 90

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init() and
before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid, usually
because a file or connection was closed.

For more information about the return codes, see page 229.

Related Functions

nwds_session_close on page 133.

nwds_ipc_broadcast on page 92.

nwds_ipc_connect on page 95.

nwds_ipc_options on page 98.

nwds_ipc_publish on page 101.

nwds_ipc_read on page 104.

nwds_ipc_register on page 107.

nwds_ipc_shutdown on page 110.

nwds_ipc_write on page 113.

NetWeave API Reference Manual Version 2.0

January 2003 91

NetWeave API Reference Manual Version 2.0

January 2003 92

NWDS_IPC_BROADCAST

This function broadcasts a message to applications that have called nwds_ipc_register to receive
a message. The nwds_ipc_broadcast function completes when the message is sent, as opposed to
nwds_ipc_write, which completes when the recipient receives the message. Because the sender
does not know (or care) whether any receivers read the message, a broadcast does not require an
acknowledgment. The nwds_ipc_broadcast function is provided as part of NetWeave’s Broadcast
option.

Applications that accept broadcast messages (receivers) register for broadcast messages by event type.
When a sender broadcasts a message of a particular type, a receiver is interrupted only if it is a message
of an event type for which the receiver has registered.

Broadcast messages are delivered to the network through a NetWeave Agent. For efficiency, certain
resources associated with the session between the application and the agent are not released after each
broadcast. These resources will be recovered when the application issues nwds_session_close.

NOTE: The netweave.h value NWDS_MAX_USER_SIZE determines the maximum length of
a broadcast message.

NWDS_ERRNO nwds_ipc_broadcast
 (char *broadcast_port,
 NWDS_FILTER_CLASS event_type,
 NWDS_SIZE buffer_size,
 void *buffer,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

broadcast_port
a

The broadcast port is either a group in the INI file or a
physical name whose first part is a NetWeave node name.
If the port designates a group, the NAME statement in the
group may identify a physical name that contains a node
name. In either case, the node name designates a section
name in the INI file that describes how to reach a
NetWeave Agent that handles the broadcast.

event_type
a

A parameter that allows receivers to identify messages as
belonging to a class of messages known to the application.

buffer_size
a

The length of the message in the buffer (next parameter,
below). It may not exceed NWDS_MAX_USER_SIZE.

buffer a The address of the array that contains the message.

control_items a A pointer to an array of system-specific parameters.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

NetWeave API Reference Manual Version 2.0

January 2003 93

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_session_close on page 133.

nwds_ipc_accept on page 89.

nwds_ipc_connect on page 95.

nwds_ipc_options on page 98.

nwds_ipc_publish on page 101.

nwds_ipc_read on page 104.

nwds_ipc_register on page 107.

nwds_ipc_shutdown on page 110.

nwds_ipc_write on page 113.

NetWeave API Reference Manual Version 2.0

January 2003 94

NetWeave API Reference Manual Version 2.0

January 2003 95

NWDS_IPC_CONNECT

The initiating end of a connection (the client) calls nwds_ipc_connect to establish a connection
with the server. This function is included in all NetWeave releases.

Applications that communicate as peers may send messages to each other at any time. To receive a
message asynchronously whenever a partner sends one, you must specify the data_received
callback. For more information, see page 89.

NWDS_ERRNO nwds_ipc_connect
 (char *server_name,
 NWDS_HANDLE *server_id,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back,
 NWDS_CALL_BACK *data_received);

Parameter Input Output Description

server_name
a

The server name (a NULL-terminated string) is an INI file
group that must contain one of the following:

• The token PROTOCOL, which contains information
about the communications parameters required to form
a connection with the server.

• The token NAME, a physical name whose first part is a
NetWeave node name. The node name indicates which
section of the INI file describes how to reach a
NetWeave Agent that mediates the connection with the
application server.

server_id
 a

The identifier for the new session. Use this identifier to write
messages to the other application.

control_items a A pointer to an array of system-specific parameters.

call_back
a

A pointer to a callback structure that contains the function
that will be called when nwds_ipc_connect completes (when
the server_id is returned). If call_back=NULL, the call is
synchronous.

data_received
a

A pointer to the callback to be called whenever a message
is received from the other application.
NOTE: If data_received=NULL, your application cannot
receive unsolicited messages. It must call nwds_ipc_read
each time it is ready to process an incoming message.
nwds_ipc_read will then suspend until data is available.

NetWeave API Reference Manual Version 2.0

January 2003 96

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_NO_MEMORY The system is overloaded; process out of memory.

NWDS_LIBRARY_ERROR Contact NetWeave support with the error traces and INI
file for the program that received the error.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

For more information about the return codes, see page 229.

Related Functions

nwds_session_close on page 133.

nwds_ipc_accept on page 89.

nwds_ipc_broadcast on page 92.

nwds_ipc_options on page 98.

nwds_ipc_publish on page 101.

nwds_ipc_read on page 104.

nwds_ipc_register on page 107.

nwds_ipc_shutdown on page 110.

nwds_ipc_write on page 113.

NetWeave API Reference Manual Version 2.0

January 2003 97

NetWeave API Reference Manual Version 2.0

January 2003 98

NWDS_IPC_OPTIONS

This function returns information (the number of queued messages, the length of each, a session’s
system type, etc.) from the communications layers. The nwds_ipc_options function is included in
all NetWeave releases.

To specify what connection information you want to know, use the return item list. Before calling
nwds_ipc_options, place the item types whose information you are requesting in the
returned_data list structure. If the call is asynchronous, use persistent memory to receive the
information that is returned. Do not declare return items on the local stack. Place the addresses of these
locations in the return_items item list. When the function call completes, NetWeave copies the values of
the requested items to the specified locations.

NWDS_ERRNO nwds_ipc_options
 (NWDS_HANDLE ipc_handle,
 NWDS_ITEM_LIST *returned_data);

Parameter Input Output Description

ipc_handle a The identifier associated with the session of interest.

returned_data
 a

The following parameters are supported on all platforms:

• NWDS_IPC_ADDRESS: protocol-dependent port address
of the source of the first message in the queue (the
message origin).

• NWDS_IPC_MAX_SEND_SIZE: the maximum length of a
message that can be sent on this virtual circuit.

• NWDS_IPC_MESSAGE_SIZE: the length of the first
message in the queue.

• NWDS_IPC_PROTOCOL: the communications protocol
used by the virtual circuit.

• NWDS_IPC_QUEUE_COUNT: number of messages in the
queue.

• NWDS_IPC_SYSTEM_TYPE: the peer’s system type.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 99

Related Functions

nwds_session_close on page 133.

nwds_ipc_accept on page 89.

nwds_ipc_broadcast on page 92.

nwds_ipc_connect on page 95.

nwds_ipc_publish on page 101.

nwds_ipc_read on page 104.

nwds_ipc_register on page 107.

nwds_ipc_shutdown on page 110.

nwds_ipc_write on page 113.

NetWeave API Reference Manual Version 2.0

January 2003 100

NetWeave API Reference Manual Version 2.0

January 2003 101

NWDS_IPC_PUBLISH

The passive end of a connection (the server) calls nwds_ipc_publish to create the port to which a
client will connect. The nwds_ipc_publish function is included in all NetWeave releases.

NWDS_ERRNO nwds_ipc_publish
 (char *public_name,
 NWDS_HANDLE *server_handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back,
 NWDS_CALL_BACK *call_received);

Parameter Input Output Description

public_name
a

The name (a NULL-terminated string) in a process INI file
group where communications layer information is stored. A
public name never includes a NetWeave node name.

server_handle
 a

The handle associated with the public name. Use this
handle to receive new connections from other applications.

control_items a A pointer to an array of system-specific parameters.

call_back
a

A pointer to a callback structure that contains the function
that will be called when nwds_ipc_publish completes (when
the server_id is returned). If NULL, the call is synchronous.

call_received
a

A pointer to the callback that will be called each time the
caller receives a new call from another application.
If call_received = NULL, your application can handle
requests from only one client at a time. To accept a
connection from a remote client when call_received =
NULL, you must do a synchronous nwds_ipc_accept
followed by synchronous calls to nwds_ipc_read.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 102

Related Functions

nwds_session_close on page 133.

nwds_ipc_accept on page 89.

nwds_ipc_broadcast on page 92.

nwds_ipc_connect on page 95.

nwds_ipc_options on page 98.

nwds_ipc_read on page 104.

nwds_ipc_register on page 107.

nwds_ipc_shutdown on page 110.

nwds_ipc_write on page 113.

NetWeave API Reference Manual Version 2.0

January 2003 103

NetWeave API Reference Manual Version 2.0

January 2003 104

NWDS_IPC_READ

This function, which is included in all NetWeave releases, retrieves the first message from the queue or
initiates a read request on the underlying communications channel. How this function works depends on
whether your applications are peers or whether the client initiates all communication. In peer-to-peer
communications, NetWeave queues any unsolicited messages until the application retrieves them. For
more information, see the NetWeave Programmer's Guide.

Broadcasts are a special case of unsolicited messages. To retrieve a broadcast message, NetWeave uses
the ipc_handle returned by nwds_ipc_register. The nwds_ipc_read function is always
synchronous.

NWDS_ERRNO nwds_ipc_read
 (NWDS_HANDLE ipc_handle,
 NWDS_SIZE buffer_size,
 void *buffer,
 NWDS_SIZE *returned_size,
 NWDS_ITEM_LIST *control_items);

Parameter Input Output Description

ipc_handle
a

The session identifier that is returned from either
nwds_ipc_connect (for the client), nwds_ipc_accept (for
the server), or nwds_ipc_register (for broadcasts).

buffer_size
a

The maximum number of bytes that may be copied to the
buffer (next parameter).

NWDS_MAX_USER_SIZE in netweave.h specifies the
maximum length for a user's message. If buffer_size
exceeds the NWDS_MAX_USER_SIZE value, NetWeave
returns the error NWDS_DATA_OVERFLOW.

buffer a The address of the array where the message is returned.

returned_size a The actual number of bytes copied to the buffer.

control_items
a

A pointer to an array of system-specific parameters.
See Considerations on the next page.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 105

Considerations

Client - Server Communication

If your application does not accept unsolicited messages, you must use nwds_ipc_read to initiate a
read on the communications line. The call is blocked until a message is received. For more information
about communication when one or the other of the applications does not accept unsolicited messages,
please see the NetWeave Programmer's Guide.

control_items

Platform Parameter Description

All platforms NWDS_IPC_CONVERT_NAME A NULL-terminated string. If it is present,
NetWeave will translate the message to the
reader’s format. The name is a group that
contains information that describes each field
in the structure of the message.

Tandem NWDS_TAN_TAG A long; Guardian I/O tag, output from read,
input to write.

Related Functions

nwds_session_close on page 133.

nwds_ipc_accept on page 89.

nwds_ipc_broadcast on page 92.

nwds_ipc_connect on page 95.

nwds_ipc_options on page 98.

nwds_ipc_publish on page 101.

nwds_ipc_register on page 107.

nwds_ipc_shutdown on page 110.

nwds_ipc_write on page 113.

NetWeave API Reference Manual Version 2.0

January 2003 106

NetWeave API Reference Manual Version 2.0

January 2003 107

NWDS_IPC_REGISTER

This function registers an application to receive broadcasts of a specific event type. The
nwds_ipc_register function is provided as part of NetWeave’s Broadcast option.

Applications that accept broadcast messages (receivers) register for broadcast messages by event type.
When a sender broadcasts a message, a receiver is interrupted only if it is a message of an event type for
which the receiver has registered.

If the data_received callback is present, NetWeave collects and queues broadcast messages for
delivery to the application. When another process broadcasts a message of the registered event type,
NetWeave calls the data_received callback to notify the application that a new message has
arrived. NetWeave queues the message until it is retrieved by a call to nwds_ipc_read. The same
callback function may be associated with more than one event type. If there is no data_received
callback, the application must call nwds_ipc_read to initiate the communications. In this case,
nwds_ipc_read is a blocking call.

NWDS_ERRNO nwds_ipc_register
 (char *broadcast_port,
 NWDS_HANDLE *ipc_handle,
 NWDS_FILTER_CLASS event_type,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back,
 NWDS_CALL_BACK *data_received);

Parameter Input Output Description

broadcast_port
a

The broadcast_port is either
• a physical name whose first part is a NetWeave node

name
• a group in the INI file (the group’s NAME statement

defines a physical name that contains a node name)

The node name is the INI file section that describes how to
reach the NetWeave Agent that receives the broadcast on
behalf of the application.

ipc_handle
 a

When your application is ready to process a broadcast
message, ipc_handle is passed to nwds_ipc_read to retrieve
the message.

event_type
a

A parameter that allows a receiver to identify messages as
belonging to a class of messages known to the application.

control_items
a

A pointer to an array of system-specific parameters. There are
no control items in NetWeave version 2.0.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

data_received
a

A pointer to the callback structure that contains the function to
call when the application receives a broadcast message.

NetWeave API Reference Manual Version 2.0

January 2003 108

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue
the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_session_close on page 133.

nwds_ipc_accept on page 89.

nwds_ipc_broadcast on page 92.

nwds_ipc_connect on page 95.

nwds_ipc_options on page 98.

nwds_ipc_publish on page 101.

nwds_ipc_read on page 104.

nwds_ipc_shutdown on page 110.

nwds_ipc_write on page 113.

NetWeave API Reference Manual Version 2.0

January 2003 109

NetWeave API Reference Manual Version 2.0

January 2003 110

NWDS_IPC_SHUTDOWN

This function terminates and cleans up a connection. The nwds_ipc_shutdown function is included
in all NetWeave releases.

NWDS_ERRNO nwds_ipc_shutdown
 (NWDS_HANDLE ipc_handle,
 NWDS_ITEM_LIST *item_list,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

ipc_handle
a

The handle associated with a particular session that is
returned from any of the following:

• nwds_ipc_connect (for the client)

• nwds_ipc_accept (for the server)

• nwds_ipc_register (for broadcasts)

item_list a A pointer to an array of system-specific parameters.

call_back a A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_SUCCESSFUL The call completed successfully.

For more information about the return codes, see page 229.

Considerations

For nwds_ipc_publish, use nwds_ipc_shutdown to prevent any new calls from being
accepted for a given public name.

For nwds_ipc_register, use nwds_ipc_shutdown to cancel a registration for broadcasts of a
particular event type.

NetWeave API Reference Manual Version 2.0

January 2003 111

Related Functions

nwds_session_close on page 133.

nwds_ipc_accept on page 89.

nwds_ipc_broadcast on page 92.

nwds_ipc_connect on page 95.

nwds_ipc_options on page 98.

nwds_ipc_publish on page 101.

nwds_ipc_read on page 104.

nwds_ipc_register on page 107.

nwds_ipc_write on page 113.

NetWeave API Reference Manual Version 2.0

January 2003 112

NetWeave API Reference Manual Version 2.0

January 2003 113

NWDS_IPC_WRITE

This function, which is included in all NetWeave releases, sends a message through an established
connection. To acknowledge that the message was received, the receiving application calls
nwds_ipc_read. This is the only way to notify the sender that the message was delivered.

For peer-to-peer communication, either the application that initiates a connection (the client) or the
application to which the connection is made (the server) may send one or more messages at any time to
the partner application. For more information about peer-to-peer communication, see the NetWeave
Programmer's Guide.

NWDS_ERRNO nwds_ipc_write
 (NWDS_HANDLE ipc_handle,
 NWDS_SIZE buffer_size,
 void *buffer,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

ipc_handle
a

The handle associated with a particular session that is
returned by one of the following:

• nwds_ipc_connect (for the client)
• nwds_ipc_accept (for the server)

buffer_size a The number of bytes in the buffer (next parameter,
below).

In netweave.h, NWDS_MAX_USER_SIZE specifies the
maximum length of a user's message. If this value
exceeds buffer_size, NetWeave returns the error
NWDS_DATA_OVERFLOW.

buffer a The address of the message buffer.

control_items a A pointer to an array of system-specific parameters.
NWDS_IPC_CONVERT_NAME is the name (a NULL
terminated string) of a group that contains information
about each field in the structure of the message. If this
named group is present, NetWeave will translate the
message to a common network format.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

NetWeave API Reference Manual Version 2.0

January 2003 114

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For more information about the return codes, see page 229.

Related Functions

nwds_session_close on page 133.

nwds_ipc_accept on page 89.

nwds_ipc_broadcast on page 92.

nwds_ipc_connect on page 95.

nwds_ipc_options on page 98.

nwds_ipc_publish on page 101.

nwds_ipc_read on page 104.

nwds_ipc_register on page 107.

nwds_ipc_shutdown on page 110.

NetWeave API Reference Manual Version 2.0

January 2003 115

NetWeave API Reference Manual Version 2.0

January 2003 116

NWDS_ITEM_LOAD_CHAR

This function, which is included in all NetWeave releases, assigns a char array to an item list element.
Programming languages such as COBOL that do not support pointer data types can use the
nwds_item_load_char function.

NWDS_ERRNO nwds_item_load_char (
 NWDS_ITEM_LIST *control_list,
 NWDS_SIZE index,
 NWDS_ITEM_TYPE item_type,
 NWDS_SIZE item_size,
 void *item_value);

Parameter Input Output Description

control_list a An item list array you want to construct.

index a The index of the array element you want to load.

item_type a The type of the item. Select from the list in netweave.h.

item_size
a

The size of the char input array, which is added to the
control list.

item_value a The address of the first element of the char array.

Return Code (output)

Return code Description

NWDS_SUCCESSFUL The call completed successfully.

NWDS_INVALID_ITEM An item in an item list is not of the proper data type or the value is
out of range.

For more information about the return codes, see page 229.

Related Functions

nwds_init on page 88.

nwds_item_load_handle on page 118.

nwds_item_load_long on page 120.

nwds_item_load_short on page 122.

NetWeave API Reference Manual Version 2.0

January 2003 117

NetWeave API Reference Manual Version 2.0

January 2003 118

NWDS_ITEM_LOAD_HANDLE

This function, which is included in all NetWeave releases, assigns a handle value (a transaction
identifier) to an item list element. Programming languages such as COBOL that do not support pointer
data types can use the nwds_item_load_handle function.

NWDS_ERRNO nwds_item_load_handle (
 NWDS_ITEM_LIST *control_list,
 NWDS_SIZE index,
 NWDS_ITEM_TYPE item_type,
 NWDS_HANDLE *item_value);

Parameter Input Output Description

control_list a An item list array you want to construct.

index a The index of the array element you want to load.

item_type a The type of the item. (Select from the list in netweave.h).

item_value
a

The name of the variable in the program’s data space
whose value is added to the list.

NOTE: This name must be a NetWeave handle.

Return Code (output)

Return code Description

NWDS_INVALID_ITEM An item in an item list is not of the proper data type or the value is
out of range.

NWDS_SUCCESSFUL The call completed successfully.

For more information about the return codes, see page 229.

Related Functions

nwds_init on page 88.

nwds_item_load_char on page 116.

nwds_item_load_long on page 120.

nwds_item_load_short on page 122.

NetWeave API Reference Manual Version 2.0

January 2003 119

NetWeave API Reference Manual Version 2.0

January 2003 120

NWDS_ITEM_LOAD_LONG

This function, which is included in all NetWeave releases, assigns a long integer value to an item list
element. Programming languages such as COBOL that do not support pointer data types can use the
nwds_item_load_long function.

NWDS_ERRNO nwds_item_load_long (
 NWDS_ITEM_LIST *control_list,
 NWDS_SIZE index,
 NWDS_ITEM_TYPE item_type,
 long *item_value);

Parameter Input Output Description

control_list a An item list array you want to create.

index a The index of the array element you want to load.

item_type a The type of the item. (Select from the list in netweave.h.)

item_value
a

The name of the variable in the program’s data space
whose value is added to the list.

Return Code (output)

Return code Description

NWDS_SUCCESSFUL The call completed successfully.

NWDS_INVALID_ITEM An item in an item list is not of the proper data type or the value is
out of range.

For more information about the return codes, see page 229.

Related Functions

nwds_init on page 88.

nwds_item_load_char on page 116.

nwds_item_load_handle on page 118.

nwds_item_load_short on page 122.

NetWeave API Reference Manual Version 2.0

January 2003 121

NetWeave API Reference Manual Version 2.0

January 2003 122

NWDS_ITEM_LOAD_SHORT

This function, which is included in all NetWeave releases, assigns a short integer value to an item list
element. Programming languages such as COBOL that do not support pointer data types can use the
nwds_item_load_short function.

NWDS_ERRNO nwds_item_load_short (
 NWDS_ITEM_LIST *control_list,
 NWDS_SIZE index,
 NWDS_ITEM_TYPE item_type,
 short *item_value);

Parameter Input Output Description

control_list a An item list array you want to construct.

index a The index of the array element you want to load.

item_type a The type of the item. (Select from the list in netweave.h).

item_value
a

The name of the short variable in the program’s data
space whose value is added to the list.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

NWDS_SUCCESSFUL The call completed successfully.

NWDS_INVALID_ITEM An item in an item list is not of the proper data type, or the value is
out of range.

For more information about the return codes, see page 229.

Related Functions

nwds_init on page 88.

nwds_item_load_char on page 116.

nwds_item_load_handle on page 118.

nwds_item_load_long on page 120.

NetWeave API Reference Manual Version 2.0

January 2003 123

NetWeave API Reference Manual Version 2.0

January 2003 124

NWDS_LOGOFF

Use this function to exit from a remote system. The nwds_logoff function is included in all
NetWeave releases.

NWDS_ERRNO nwds_logoff
 (char *system_name,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

system_name
a

The name of the system from which you want to
disconnect.

control_items
a

A pointer to an array of system-specific parameters.
There are no control_items currently defined for
nwds_logoff.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init() and
before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_logon on page 126.

nwds_msglog on page 126.

nwds_password on page 130.

NetWeave API Reference Manual Version 2.0

January 2003 125

NetWeave API Reference Manual Version 2.0

January 2003 126

NWDS_LOGON

This function, which is included in all NetWeave releases, connects the calling application to a remote
system with validated access. To use the nwds_logon function, you must have a NetWeave Agent
running on the remote platform. The Agent validates the supplied user name/password against the
remote platform’s authentication facility. For additional security, the calling application may also
request that the Agent on the remote system periodically send a challenge string.

NWDS_ERRNO nwds_logon
 (char *system_name,
 NWDS_SIZE name_size,
 void *user_name,
 NWDS_ITEM_LIST *control_items,
 NWDS_ITEM_LIST *return_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

system_name a The name of the system to which you want to connect.

name_size a The size of the name.

user_name a The name of the user who is logging on.

control_items
a

A pointer to an array of system-specific parameters. There
are no control_items currently defined for nwds_logon.

return_items
 a

If you implement challenge-response authentication, you
may request the return item nwds_acl_challenge.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_logoff on page 124.

nwds_msglog on page 126.

nwds_password on page 130.

NetWeave API Reference Manual Version 2.0

January 2003 127

NWDS_MSGLOG

The nwds_msglog function allows applications to add application-level logging to the NetWeave
logging facility, and to control the logging level (DEBUG, INFO, ERROR) external to the operating
program. The application must set the severity level of a message to a value specified by
nwds_msglog_severity. The messages in the log will be formatted according to the conventions
of the printf function in C.

The nwds_msglog function is always synchronous. For more information, see “Message and Error
Logging Considerations” in the NetWeave Configuration Guide.

typedef enum {
 NWDS_MLSTRACE = 1, /*"TRACE" msglog_level*/
 NWDS_MLSINFO, /*"INFO" msglog_level*/
 NWDS_MLSWARNING, /*"WARNING" msglog_level*/
 NWDS_MLSERROR, /*"ERROR" msglog_level*/
 NWDS_MLSFATAL /*"FATAL" msglog_level*/
} NWDS_MSGLOG_SEVERITY;

NWDS_ERRNO nwds_msglog(
 NWDS_MSGLOG_SEVERITY severity,
 const char *format,
 ... parameters...);

Parameter Input Output Description

severity
a

One of the values specified by the enumerated type
nwds_msglog_severity, cf. netweave.h. Indicates the level
of error associated with the generated message.

format
a

The format string follows the conventions of the printf
function in C.

parameters
a

The data types and order of parameters must match the
data type indicators in the format string.

Return Code

Return code Description

NWDS_BAD_PARAMETER You are trying to call a function but one of your parameters
is out of range.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 128

Related Functions

nwds_logoff on page 124.

nwds_logon on page 126.

nwds_password on page 130.

NetWeave API Reference Manual Version 2.0

January 2003 129

NetWeave API Reference Manual Version 2.0

January 2003 130

NWDS_PASSWORD

This function, which is included in all NetWeave releases, sends a password to a remote system. (As an
option, you may return a response to a challenge to the remote server.)

NWDS_ERRNO nwds_password
 (char *system_name,
 NWDS_SIZE buffer_size,
 void *password,
 NWDS_ITEM_LIST *control_item,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

system_name a The name of the system to which you want to connect.

buffer_size a The length of the password string.

password a A pointer to an array that contains the password.

control_items
a

A pointer to an array of system-specific parameters.
Currently there are no control items specific to
nwds_password.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_logoff on page 124.

nwds_logon on page 126.

nwds_msglog on page 126.

NetWeave API Reference Manual Version 2.0

January 2003 131

NWDS_PING

The nwds_ping function determines the status of a connection to a NetWeave Agent by sending a
(very short) message to the NetWeave Agent, which echoes a return message. If there is no connection,
one is created if it’s possible. If nwds_system_type has already established a connection, it does
not send a message to the NetWeave Agent. The nwds_ping function is included in all NetWeave
releases.

NWDS_ERRNO nwds_ping
 (char *netweave_node,
 NWDS_ITEM_LIST *item_list,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

netweave_node
a

A section name in the INI file that specifies the
parameters for the communications layer between your
application and the application or NetWeave Server that
corresponds to the node.
The name is a sequence of letters followed by two colons
and terminated with a NULL byte. It may be either a
logical name or a node name.

item_list
a

A pointer to an array of system-specific parameters.
Currently there are no item types specific for nwds_ping.

call_back
a

A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init() and
before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_system_type on page 166.

NetWeave API Reference Manual Version 2.0

January 2003 132

NetWeave API Reference Manual Version 2.0

January 2003 133

NWDS_SESSION_CLOSE

The nwds_session_close function releases all resources associated with a NetWeave node, and is
used mainly to clean up resources associated with a broadcast session. This function is included in all
NetWeave releases. For more information, see nwds_ipc_broadcast on page 92.

NWDS_ERRNO nwds_session_close
 (char *netweave_node,
 NWDS_ITEM_LIST *item_list,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

netweave_node
a

A section name in the INI file that specifies the
parameters for the communications layer between
your application and the application or NetWeave
Agent corresponding to the node.
The name is a sequence of letters followed by two
colons and terminated with a NULL byte. The name
may be either a logical name or a node name.

item_list
a

A pointer to an array of system-specific parameters.
Currently no item types are specific to
nwds_session_close.

call_back
a

A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

NWDS_PROCESS_NOT_CONNECTED The session is already closed.

For more information about the return codes, see page 229.

Related Functions

nwds_ipc_accept on page 89.

nwds_ipc_broadcast on page 92.

nwds_ipc_connect on page 95.

nwds_ipc_options on page 98.

NetWeave API Reference Manual Version 2.0

January 2003 134

nwds_ipc_publish on page 101.

nwds_ipc_read on page 104.

nwds_ipc_register on page 107.

nwds_ipc_shutdown on page 110.

nwds_ipc_write on page 113.

NetWeave API Reference Manual Version 2.0

January 2003 135

NetWeave API Reference Manual Version 2.0

January 2003 136

NWDS_SLEEP

A call to nwds_sleep suspends your application, and the item types you specify further define if and
when your process resumes execution. The nwds_sleep function is included in all NetWeave
releases.

Programs containing asynchronous operations call nwds_sleep to resynchronize. Either your
program waits indefinitely while callbacks continue processing, or your program waits for an event to
occur or for a timeout period to expire.

NWDS_ERRNO nwds_sleep
 (NWDS_MILLISECONDS timeout,
 NWDS_ITEM_LIST *item_list,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

timeout
a

If positive, the timeout duration is specified in milliseconds.
If timeout=-1, timeout is forever.

item_list
a

A pointer to an array of system-specific parameters. The
following item types apply to nwds_sleep:

• NWDS_KERNEL_ONCE

• NWDS_KERNEL_SUSPEND
For more information, see Considerations below.

call_back a nwds_sleep ignores the call_back parameter. Set it to
NULL.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_PENDING The operation was initiated successfully. Final status and
data will be delivered to the specified callback function.

NWDS_SUCCESSFUL The call completed successfully.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 137

Considerations

When using nwds_sleep, the term next event refers to any activity that causes a user’s callback to be
called - typically activity in a communications layer controlled by the NetWeave middleware. Your
program may suspend in any of the following ways:

Timeout value Item type Result

NWDS_KERNEL_ONCE Your program will wait forever for the next event.
Applications may use this form of nwds_sleep to
construct a poll loop that checks whether some
application activity has occurred, and if not,
suspends again.

Negative (-1)

NWDS_KERNEL_ONCE is
not present

Your program will suspend indefinitely. Use this
form of nwds_sleep for normal asynchronous
operations where all application work is performed
in the callbacks in reaction to messages,
broadcasts, or triggers that the program receives.
This is referred to as the event -driven model of
asynchronous programming.

NWDS_KERNEL_SUSPEND The underlying software will continue to call
callback functions until the timer expires. Use this
form of nwds_sleep to introduce a delay in your
main line of execution, while continuing to allow
callback functions to be invoked by the NetWeave
system. For example, use this form of nwds_sleep
for application level poll loops where multiple
events must be resynchronized.

Positive

NWDS_KERNEL_SUSPEND
is not present

The underlying software will suspend until the next
event, such as the expiration of the timeout period.
If the next event is not expiration of the timer, but
instead (for example) some communications
activity, the timer is canceled and control is
returned to your program. Use this form of
nwds_sleep to implement application-level timeouts
for asynchronous function calls.

Related Functions

nwds_exit on page 41.

nwds_sleep_callback on page 138.

nwds_sleep_clear_callback on page 141.

nwds_stop on page 164.

nwds_timer_start on page 169.

nwds_timer_stop on page 172.

NetWeave API Reference Manual Version 2.0

January 2003 138

NWDS_SLEEP_CALLBACK

The nwds_sleep_callback function lets you enqueue a callback from a notification routine to
permit serialization of user callbacks. NetWeave then calls the enqueued callback during the next
processing cycle. The nwds_sleep_callback function is included in all NetWeave releases.

NWDS_ERRNO nwds_sleep_callback
 (NWDS_CALL_BACK *call_back,
 NWDS_ERRNO errno);

Parameter Input Output Description

call_back
a

The callback structure identifies the application function that
NetWeave will call at the beginning of the next processing
cycle. This memory must persist after the current function
exits.

errno
a

The condition code that the enqueing function wants to pass
to the subsequent callback procedure.

Return Code (output)

Return code Description

NWDS_SUCCESSFUL The call completed successfully.

NWDS_NO_MEMORY The application exceeds the available heap space.

For more information about the return codes, see page 229.

Considerations

To serialize callback processing, use nwds_sleep_callback to enqueue a callback from a
notification routine. You must enter the sleep forever loop with a special item list type called
NWDS_KERNEL_LOOP. The code fragment below shows how to do this.

NWDS_ITEM_LIST items[2];

 items[0].type = NWDS_KERNEL_LOOP;
 items[1].type = NWDS_END_OF_LIST;

 status = nwds_sleep(-1L, items, NULL);

During one processing cycle, additional callbacks may be enqueued. Any callback that is enqueued
during a cycle is invoked at the beginning of the next cycle. If several callbacks are queued at the same

NetWeave API Reference Manual Version 2.0

January 2003 139

time, they are invoked in the chronological order in which they were enqueued. If an application is
waiting under the kernel suspend option, nwds_sleep will return at the end of the cycle.

Related Functions

nwds_exit on page 41.

nwds_sleep on page 136.

nwds_sleep_clear_callback on page 141.

nwds_stop on page 164.

nwds_timer_start on page 169.

nwds_timer_stop on page 172.

NetWeave API Reference Manual Version 2.0

January 2003 140

NetWeave API Reference Manual Version 2.0

January 2003 141

NWDS_SLEEP_CLEAR_CALLBACK

This function clears or cancels a previously enqueued callback, and should be used in conjunction with
the nwds_sleep_callback. function. The nwds_sleep_clear_callback function is
included in all NetWeave releases.

NWDS_ERRNO nwds_sleep_clear_callback
 (NWDS_CALL_BACK *call_back);

Parameter Input Output Description

call_back
a

The callback structure identifies the callback that
NetWeave is to cancel.

Return Code (output)

Return code Description

NWDS_SUCCESSFUL The call completed successfully.

NWDS_PROCESS_NOT_FOUND The callback is not currently registered with NetWeave.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

For more information about the return codes, see page 229.

Related Functions

nwds_exit on page 41.

nwds_sleep on page 136.

nwds_sleep_callback on page 138.

nwds_stop on page 164.

nwds_timer_start on page 169.

nwds_timer_stop on page 172.

NetWeave API Reference Manual Version 2.0

January 2003 142

NetWeave API Reference Manual Version 2.0

January 2003 143

NWDS_SQL_COLUMN_BIND

This function relates a variable in the user’s data space to a specific column of a SQL table. The
nwds_sql_column_bind function is provided as part of NetWeave’s Data Server option.

NWDS_ERRNO nwds_sql_column_bind
 (NWDS_HANDLE handle,
 NWDS_SIZE column_number,
 void *value_address);

Parameter Input Output Description

handle a The handle to use for operations on this table.

column_number a The index of the column.

value_address
a

The name of a variable in the program’s data space
to which data from this column will be returned.

Return Code (output)

Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_SQL_INVALID_COLUMN Invalid column index.

NWDS_SUCCESSFUL The bind is successful.

For more information about the return codes, see page 229.

Related Functions

nwds_sql_column_count on page 143.

nwds_sql_column_get on page 146.

nwds_sql_column_info on page 149.

nwds_sql_connect on page 152.

nwds_sql_disconnect on page 166.

nwds_sql_execute on page 154.

nwds_sql_fetch on page 158.

nwds_sql_select on page 161.

NetWeave API Reference Manual Version 2.0

January 2003 144

NWDS_SQL_COLUMN_COUNT

After successful execution of a SELECT command, use nwds_sql_column_count to obtain the
number of columns described by the SELECT. This function is provided as part of NetWeave’s Data
Server option.

NWDS_ERRNO nwds_sql_column_count
 (NWDS_HANDLE handle,
 NWDS_SIZE *column_number);

Parameter Input Output Description

handle a The handle to use for operations on this file.

column_number a The number of columns described.

Return Code (output)

Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

NWDS_SUCCESSFUL The bind is successful.

For more information about the return codes, see page 229.

Related Functions

nwds_sql_column_bind on page 143.

nwds_sql_column_get on page 146.

nwds_sql_column_info on page 149.

nwds_sql_connect on page 152.

nwds_sql_disconnect on page 166.

nwds_sql_execute on page 154.

nwds_sql_fetch on page 158.

nwds_sql_select on page 161.

NetWeave API Reference Manual Version 2.0

January 2003 145

NetWeave API Reference Manual Version 2.0

January 2003 146

NWDS_SQL_COLUMN_GET

This function returns the name of a column as a string. The nwds_sql_column_get function is
provided as part of NetWeave’s Data Server option.

NWDS_ERRNO nwds_sql_column_get
 (NWDS_HANDLE handle,
 NWDS_SIZE column_number,
 NWDS_SIZE maximum_name_size,
 void *value_address,
 NWDS_SIZE *actual_name_size);

Parameter Input Output Description

handle a The handle to use for operations on this file.

column_number a The index of the column.

maximum_name_size a The maximum size of the column name.

value_address a The name of a variable in the program’s data
space to which data from this column will be
returned.

actual_name_size a The actual size of the column name.

Return Code (output)

Return code Description

NWDS_SUCCESSFUL The bind is successful.

NWDS_BAD_HANDLE The first parameter is invalid. You are trying to reuse a
handle that has become invalid, usually because a file or
connection was closed.

NWDS_SQL_INVALID_COLUMN The second parameter is invalid.

NWDS_DATA_OVERFLOW The third parameter is too small.

For more information about the return codes, see page 229.

Related Functions

nwds_sql_column_bind on page 143.

nwds_sql_column_count on page 143.

nwds_sql_column_info on page 149.

NetWeave API Reference Manual Version 2.0

January 2003 147

nwds_sql_connect on page 152.

nwds_sql_disconnect on page 166.

nwds_sql_execute on page 154.

nwds_sql_fetch on page 158.

nwds_sql_select on page 161.

NetWeave API Reference Manual Version 2.0

January 2003 148

NetWeave API Reference Manual Version 2.0

January 2003 149

NWDS_SQL_COLUMN_INFO

After a successful execution of a SELECT command, use nwds_sql_column_info to obtain the
name and data type of each of the columns described by SELECT. This function is provided as part of
NetWeave’s Data Server option.

NWDS_ERRNO nwds_sql_column_info
 (NWDS_HANDLE handle,
 NWDS_SIZE column_number,
 NWDS_SIZE name_buffer,
 char *name,
 NWDS_SIZE *return_size,
 NWDS_DATA_CLASS *data_type);

Parameter Input Output Description

handle a The handle to use for operations on this file.

column_number a The number of the column for which you wish to
obtain information.

name_buffer a The size of the buffer for name.

name a The name of the data type.

return_size a The size of the column name.

data_type a The data type of the column.

Return Code (output)

Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become
invalid, usually because a file or connection was
closed.

NWDS_DATA_OVERFLOW The third parameter is too small.

NWDS_SQL_INVALID_COLUMN The second parameter is invalid.

NWDS_SUCCESSFUL The bind is successful.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 150

Related Functions

nwds_sql_column_bind on page 143.

nwds_sql_column_count on page 143.

nwds_sql_column_get on page 146.

nwds_sql_connect on page 152.

nwds_sql_disconnect on page 166.

nwds_sql_execute on page 154.

nwds_sql_fetch on page 158.

nwds_sql_select on page 161.

NetWeave API Reference Manual Version 2.0

January 2003 151

NetWeave API Reference Manual Version 2.0

January 2003 152

NWDS_SQL_CONNECT

Use this function to attach to the SQL database at the system specified by system_name. The
nwds_sql_connect function is provided as part of NetWeave’s Data Server option.

NWDS_ERRNO nwds_sql_connect
 (char *system_name,
 NWDS_HANDLE *handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

system_name a The name of the system to which you want to connect.

handle a The handle to use for subsequent operations on this file.

control_items
a

A pointer to an array of system-specific parameters:
• NWDS_SQL_USERNAME

• NWDS_SQL_PASSWORD

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_sql_column_bind on page 143.

nwds_sql_column_count on page 143.

nwds_sql_column_get on page 146.

nwds_sql_column_info on page 149.

nwds_sql_disconnect on page 166.

nwds_sql_execute on page 154.

nwds_sql_fetch on page 158.

nwds_sql_select on page 161.

NetWeave API Reference Manual Version 2.0

January 2003 153

NetWeave API Reference Manual Version 2.0

January 2003 154

NWDS_SQL_DISCONNECT

Use this function to disconnect from a SQL database. The nwds_sql_disconnect function is
provided as part of NetWeave’s Data Server option.

NWDS_ERRNO nwds_sql_disconnect
 (NWDS_HANDLE handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

handle a The handle to use for operations on this file.

control_items a A pointer to an array of system-specific parameters.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_sql_column_bind on page 143.

nwds_sql_column_count on page 143.

nwds_sql_column_get on page 146.

nwds_sql_column_info on page 149.

nwds_sql_connect on page 152.

nwds_sql_execute on page 154.

nwds_sql_fetch on page 158.

nwds_sql_select on page 161.

NetWeave API Reference Manual Version 2.0

January 2003 155

NWDS_SQL_EXECUTE

Use this function to execute a command on a remote SQL database. The nwds_sql_execute
function is provided as part of NetWeave’s Data Server option.

NWDS_ERRNO nwds_sql_execute
 (NWDS_HANDLE handle,
 char *command,
 char **variable_values,
 NWDS_ITEM_LIST *control_items,
 NWDS_ITEM_LIST *return_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

handle a The handle to use for operations on this file.

command
a

The SQL command to execute during the call. Not all
SQL statements will be processed by
nwds_sql_execute. For example, SELECT and FETCH
statements cannot be executed; but they have their
own API.
For Tandem’s NonStopSQL, the BEGIN WORK,
COMMIT WORK and ROLLBACK WORK commands are
rejected. Instead, use nwds_tp_start, nwds_tp_commit,
and nwds_tp_abort.

variable_values
a

An array of strings that specify input values for
parameters in the command.

control_items a A pointer to an array of system-specific parameters.

return_items
 a

A pointer to an array of system-specific parameters:

• NWDS_SQL_ERROR_CODE: the host SQL process
returns these codes.

• NWDS_SQL_ERROR_TEXT: The programmer must
interpret the codes for the platform and determine
the nature of the problem.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

NetWeave API Reference Manual Version 2.0

January 2003 156

Return Code (output)

Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

If nwds_sql_execute returns nwds_sql_invalid_verb, use another NetWeave function for
this task. For more information about the return codes, see page 229.

Related Functions

nwds_sql_column_bind on page 143.

nwds_sql_column_count on page 143.

nwds_sql_column_get on page 146.

nwds_sql_column_info on page 149.

nwds_sql_connect on page 152.

nwds_sql_disconnect on page 166.

nwds_sql_fetch on page 158.

nwds_sql_select on page 161.

NetWeave API Reference Manual Version 2.0

January 2003 157

NetWeave API Reference Manual Version 2.0

January 2003 158

NWDS_SQL_FETCH

Use this function to return one row and store the values in the user’s data space. The
nwds_sql_fetch function is provided as part of NetWeave’s Data Server option.

NWDS_ERRNO nwds_sql_fetch
 (NWDS_HANDLE handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_ITEM_LIST *return_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

handle a The handle to use for operations on this file.

control_items a A pointer to an array of system-specific parameters.

return_items
 a

A pointer to an array of system-specific parameters:

• NWDS_SQL_ERROR_CODE: the host SQL process
returns these codes.

• NWDS_SQL_ERROR_TEXT: the programmer must
interpret the codes for the platform and determine the
nature of the problem.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For more information about the return codes, see page 229.

Related Functions

nwds_sql_column_bind on page 143.

nwds_sql_column_count on page 143.

nwds_sql_column_get on page 146.

nwds_sql_column_info on page 149.

nwds_sql_connect on page 152.

NetWeave API Reference Manual Version 2.0

January 2003 159

nwds_sql_disconnect on page 166.

nwds_sql_execute on page 154.

nwds_sql_select on page 161.

NetWeave API Reference Manual Version 2.0

January 2003 160

NetWeave API Reference Manual Version 2.0

January 2003 161

NWDS_SQL_SELECT

This function executes SELECT on a remote SQL database. The nwds_sql_select function is
provided as part of NetWeave’s Data Server option.

NWDS_ERRNO nwds_sql_select
 (NWDS_HANDLE handle,
 char *command,
 char **variable_values,
 NWDS_ITEM_LIST *control_items,
 NWDS_ITEM_LIST *return_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

handle a The handle to use for subsequent operations on this file.

command a The SQL select command.

variable_values
a

An array of strings that specify input values for
parameters in the command.

control_items a A pointer to an array of system-specific parameters.

return_items a A pointer to an array of system-specific parameters.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid, usually
because a file or connection was closed.

For more information about the return codes, see page 229.

Related Functions

nwds_sql_column_bind on page 143.

nwds_sql_column_count on page 143.

nwds_sql_column_get on page 146.

nwds_sql_column_info on page 149.

nwds_sql_connect on page 152.

NetWeave API Reference Manual Version 2.0

January 2003 162

nwds_sql_disconnect on page 166.

nwds_sql_execute on page 154.

nwds_sql_fetch on page 158.

NetWeave API Reference Manual Version 2.0

January 2003 163

NetWeave API Reference Manual Version 2.0

January 2003 164

NWDS_STOP

This function, which is included in all NetWeave releases, stops the execution of a remote process that
you started.

NWDS_ERRNO nwds_stop
 (char *process_name,
 NWDS_ITEM_LIST *item_list,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

process_name
a

The name of the process (system-specific).
To retrieve the name of a process that you started, see
nwds_execute on page 36.

item_list a A pointer to an array of system-specific parameters.

call_back
a

A pointer to the callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init() and
before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_exit on page 41.

nwds_sleep on page 136.

nwds_sleep_callback on page 138.

nwds_sleep_clear_callback on page 141.

nwds_timer_start on page 169.

nwds_timer_stop on page 172.

NetWeave API Reference Manual Version 2.0

January 2003 165

NetWeave API Reference Manual Version 2.0

January 2003 166

NWDS_SYSTEM_TYPE

This function determines the system type on which the designated NetWeave Agent or remote
application is running. If the system type has already been determined, nwds_system_type returns
the previously obtained system type information without sending a message to the remote system. The
nwds_system_type function is included in all NetWeave releases.

NOTE: Unlike nwds_system_type, the nwds_ping function always sends a message to the
NetWeave Agent.

NWDS_ERRNO nwds_system_type
 (char *netweave_node,
 NWDS_SYSTEM_CLASS *system_type,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

netweave_node
a

A section name in the INI file that specifies the parameters
for the communications layer between your application
and the application or NetWeave Agent that corresponds
to the node.

The name is a sequence of letters followed by two colons
and terminated with a NULL byte. The name may be
either a logical name or a node name.

system_type
 a

For the complete list of supported system types, see
netweave.h.

control_items
a

A pointer to an array of system-specific parameters.
Currently there are no items types specific to
nwds_system_type.

call_back
a

A pointer to a callback structure. If NULL, the call is
synchronous

Return Code (output)

Return code Description

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_SUCCESSFUL The call completed successfully.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 167

Related Functions

nwds_ping on page 131.

NetWeave API Reference Manual Version 2.0

January 2003 168

NetWeave API Reference Manual Version 2.0

January 2003 169

NWDS_TIMER_START

The nwds_timer_start function associates a callback with a timer event (identified by a
nwds_handle) that is returned to the user. When the timer expires, NetWeave calls the user’s
callback function. The nwds_timer_start function is included in all NetWeave releases.

NWDS_ERRNO nwds_timer_start
 (NWDS_MILLISECONDS timer_value,
 NWDS_HANDLE *handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

timer_value a Timeout value, in milliseconds.

handle a The identifier to use for subsequent timer operations.

control_items
a

A pointer to an array of system-specific parameters:

• NWDS_TIMER_TYPE: a logical value that defines the
timer type.

• NWDS_PERSISTENT: automatically resets the timer
after each expiration.

• NWDS_SINGLE (default): a “one-shot” timer that is set
once and either expires or is stopped. This form of
timer is intended for applications that require a regular
signal.

call_back a A pointer to a callback structure.

Return Code (output)

Return code Description

NWDS_BAD_PARAMETER You are trying to call a function but one of your
parameters is out of range.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 170

Related Functions

nwds_exit on page 41.

nwds_sleep on page 136.

nwds_sleep_callback on page 138.

nwds_sleep_clear_callback on page 141.

nwds_stop on page 164.

nwds_timer_stop on page 172.

NetWeave API Reference Manual Version 2.0

January 2003 171

NetWeave API Reference Manual Version 2.0

January 2003 172

NWDS_TIMER_STOP

This function halts the timer associated with a handle. It is included in all NetWeave releases.

NWDS_ERRNO nwds_timer_stop (NWDS_HANDLE);

Parameter Input Output Description

handle a The identifier returned from a call to nwds_timer_start.

Return Code (output)

Return code Description

NWDS_BAD_HANDLE There is no timer associated with the handle.

NWDS_BAD_PARAMETER You are trying to call a function but one of your
parameters is out of range.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

NWDS_SUCCESSFUL The timer was stopped successfully.

For more information about the return codes, see page 229.

Related Functions

nwds_exit on page 41.

nwds_sleep on page 136.

nwds_sleep_callback on page 138.

nwds_sleep_clear_callback on page 141.

nwds_stop on page 164.

nwds_timer_start on page 169.

NetWeave API Reference Manual Version 2.0

January 2003 173

NetWeave API Reference Manual Version 2.0

January 2003 174

NWDS_TP_ABORT

This function aborts a transaction. It is included in all NetWeave releases.

NWDS_ERRNO nwds_tp_abort
 (NWDS_HANDLE tp_handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

tp_handle a The handle returned from nwds_tp_start.

control_items a A pointer to an array of system-specific parameters.

call_back
a

A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

NWDS_NO_MEMORY The system is overloaded; process out of memory.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_PENDING The operation has been initiated successfully. Final status
and data will be delivered to the specified callback function.

NWDS_SUCCESSFUL The call completed successfully.

For more information about the return codes, see page 229.

Related Functions

nwds_tp_commit on page 175.

nwds_tp_resume on page 176.

nwds_tp_start on page 177.

nwds_tp_status on page 180.

NetWeave API Reference Manual Version 2.0

January 2003 175

NWDS_TP_COMMIT

This function commits a transaction. Any file changes associated with the transaction identifier are
made at this point and become visible to other users. The nwds_tp_commit function is included in
all NetWeave releases.

NWDS_ERRNO nwds_tp_commit
 (NWDS_HANDLE tp_handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

tp_handle a The handle returned from nwds_tp_start.

control_items a A pointer to an array of system-specific parameters.

call_back
a

A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

NWDS_NO_MEMORY The system is overloaded; process out of memory.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_PENDING The operation has been initiated successfully. Final status
and data will be delivered to the specified callback function.

For more information about the return codes, see page 229.

Related Functions

nwds_tp_abort on page 174.

nwds_tp_resume on page 176.

nwds_tp_start on page 177.

nwds_tp_status on page 180.

NetWeave API Reference Manual Version 2.0

January 2003 176

NWDS_TP_RESUME

Use this function, which is included in all NetWeave releases, to resume a transaction. The
nwds_tp_resume function applies only to Tandem.

NWDS_ERRNO nwds_tp_resume
 (NWDS_HANDLE tp_handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

tp_handle a The handle returned from nwds_tp_start.

control_items a A pointer to an array of system-specific parameters.

call_back a A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_tp_abort on page 174.

nwds_tp_commit on page 175.

nwds_tp_start on page 177.

nwds_tp_status on page 180.

NetWeave API Reference Manual Version 2.0

January 2003 177

NetWeave API Reference Manual Version 2.0

January 2003 178

NWDS_TP_START

This function starts a transaction at a remote host that supports a transaction protection (TP) monitor.
On Tandem, if NetWeave handles any of the I/O, an application must call nwds_tp_start instead
of the Guardian begintransaction. The nwds_tp_start function is included in all NetWeave
releases.

NWDS_ERRNO nwds_tp_start
 (char *netweave_node,
 NWDS_HANDLE *tp_handle,
 NWDS_SIZE max_name_length,
 char *transaction_name,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

netweave_node
a

A section name in the INI file that specifies the
parameters for the communications layer between your
application and the NetWeave agent. The name may be
either a logical name or a node name.

tp_handle a The handle to be used with subsequent function calls.

max_name_length
a

The maximum number of bytes that can be copied to the
transaction_name parameter.

transaction_name
 a

A printable representation of the transaction_id. It is
terminated with a NULL byte.

control_items a A pointer to an array of system-specific parameters.

call_back
a

A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call
nwds_init() and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 179

Related Functions

nwds_tp_abort on page 174.

nwds_tp_commit on page 175.

nwds_tp_resume on page 176.

nwds_tp_status on page 180.

NetWeave API Reference Manual Version 2.0

January 2003 180

NetWeave API Reference Manual Version 2.0

January 2003 181

NWDS_TP_STATUS

This function returns information about an active transaction, not about transactions that have already
committed or aborted. The nwds_tp_status function is included in all NetWeave releases.

NWDS_ERRNO nwds_tp_status
 (char *netweave_node,
 char *transaction_name,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

netweave_node
a

A section name in the INI file that specifies the
parameters for the communications layer between your
application and the NetWeave agent. The section
name may be either a logical name or a node name.

transaction_name a A printable representation of the transaction_id.

control_items a A pointer to an array of system-specific parameters.

call_back
a

A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling nwds_init()
and before calling nwds_exit(). Call nwds_init() and re-issue the
NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_tp_abort on page 174.

nwds_tp_commit on page 175.

nwds_tp_resume on page 176.

nwds_tp_start on page 177.

NetWeave API Reference Manual Version 2.0

January 2003 182

NWDS_TRIGGER_CANCEL

This function dissociates a callback function from an event on a particular file. The
nwds_trigger_cancel function is provided as part of NetWeave’s Data Server option.

NWDS_ERRNO nwds_trigger_cancel
 (NWDS_HANDLE file_handle,
 NWDS_ITEM_LIST *control_items,
 NWDS_CALL_BACK *call_back);

Parameter Input Output Description

file_handle a The handle from a call to nwds_file_open.

control_items a A pointer to an array of system-specific parameters.

call_back a A pointer to a callback structure. If NULL, the call is
synchronous.

Return Code (output)

Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

For more information about the return codes, see page 229.

Related Functions

nwds_trigger_read on page 184.

nwds_trigger_register on page 186.

NetWeave API Reference Manual Version 2.0

January 2003 183

NetWeave API Reference Manual Version 2.0

January 2003 184

NWDS_TRIGGER_READ

This function returns the old and/or new records associated with the following trigger events:

• Add: a copy of the new record is returned in the new_buffer.

• Delete: a copy of the deleted record is returned in the old_buffer.

• Update: a copy of the original record is in the old_buffer and a copy of the changed record
is in the new_buffer.

NOTE: Use the register to determine whether you should be passing old and/or new buffers.

The nwds_trigger_read function is provided as part of NetWeave’s Data Server option. A
nwds_trigger_read call is always synchronous because NetWeave queues the record(s) for the
application before calling the callback from nwds_trigger_register.

NWDS_ERRNO nwds_trigger_read
 NWDS_HANDLE file_handle,
 NWDS_FILTER_CLASS *trigger_type,
 NWDS_SIZE maximum_length_new_buffer,
 void *new_buffer,
 NWDS_SIZE *actual_length_new_buffer,
 NWDS_ROW_VERSION *new_row_version,
 NWDS_SIZE maximum_length_old_buffer,
 void *old_buffer,
 NWDS_SIZE *actual_length_old_buffer,
 NWDS_ROW_VERSION *old_row_version,
 NWDS_TRANS_ID *transaction_id,
 NWDS_ITEM_LIST *control_items);

Parameter Input Output Description

file_handle a The handle returned from a call to
nwds_file_open.

trigger_type a The trigger type of the particular change to the
file.

maximum_length_new_buffer
a

The maximum number of bytes that may be
copied to new_buffer. If the record exceeds this
size, only maximum_length_new_buffer bytes
are copied to the buffer and
NWDS_DATA_OVERFLOW is returned.

new_buffer
a

An array in the user's data space where
NetWeave will put the new record image.

actual_length_new_buffer a The number of bytes written to new_buffer.

new_row_version
 a

An identifier to pass on update to synchronize
updates from multiple users.

NetWeave API Reference Manual Version 2.0

January 2003 185

Parameter Input Output Description

maximum_length_old_buffer
a

The maximum number of bytes that may be
copied to old_buffer. If the record exceeds this
size, only maximum_length_old_buffer bytes
are copied to the buffer and
NWDS_DATA_OVERFLOW is returned.

old_buffer
a

An array in the user's data space where
NetWeave will put the original record image.

actual_length_old_buffer a The number of bytes written to old_buffer.

old_row_version
 a An identifier to pass on update to synchronize

updates from multiple users.

transaction_id
a

The transaction name returned from a call to
nwds_tp_start.

control_items
a

A pointer to an array of system-specific
parameters.

Return Code (output)

Return code Description

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

For more information about the return codes, see page 229.

Related Functions

nwds_trigger_cancel on page 182.

nwds_trigger_register on page 186.

NetWeave API Reference Manual Version 2.0

January 2003 186

NetWeave API Reference Manual Version 2.0

January 2003 187

NWDS_TRIGGER_REGISTER

This function associates a callback function with an event (a combination of add, delete, update) on a
particular file. An application process that wants to monitor changes to the file must open the file. Call
nwds_trigger_read to read the data that was the basis for the trigger event. The
nwds_trigger_register function is provided as part of NetWeave’s Data Server option.

NWDS_ERRNO nwds_trigger_register
 (NWDS_HANDLE file_handle,
 NWDS_FILTER_CLASS trigger_type,
 NWDS_ITEM_LIST *item_list,
 NWDS_CALL_BACK *call_back,
 NWDS_CALL_BACK *data_received);

Parameter Input Output Description

file_handle a The identifier returned from a call to nwds_file_open.

trigger_type a Mask of trigger types: nwds_trigger_update,
nwds_trigger_write, and/or nwds_trigger_delete. For the
complete list of trigger functions, see page 14 or
netweave.h.

item_list a A pointer to an array of system-specific parameters.

call_back a A pointer to a callback structure. If NULL, the call is
synchronous.

data_received a A pointer to the callback structure containing the function to
call when a trigger message is received. For example, this
callback function might call nwds_trigger_read to retrieve
the message.

Return Code (output)

Return code Description

NWDS_BAD_HANDLE You are trying to reuse a handle that has become invalid,
usually because a file or connection was closed.

NWDS_NOT_IMPLEMENTED The function is not available on the current platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after calling
nwds_init() and before calling nwds_exit(). Call nwds_init()
and re-issue the NetWeave function call.

NWDS_INVALID_OPERATION The attempted operation is not appropriate to the target
object.

For more information about the return codes, see page 229.

NetWeave API Reference Manual Version 2.0

January 2003 188

Related Functions

nwds_trigger_cancel on page 182.

nwds_trigger_read on page 184.

NetWeave API Reference Manual Version 2.0

January 2003 189

Item Types and Values

In netweave.h, constants are defined for item types and values. An item list is an array of structures that
declare the parameters that control a remote function call or receive information from a remote function.
The item list structure can accommodate both constant and variable length parameter values.

Let’s look at the definition of a single element of an item list called nwds_item_list using the C
sizeof operator for numeric values:

 typedef struct {
 NWDS_ITEM_TYPE type;
 NWDS_SIZE length;
 void *item;
 } NWDS_ITEM_LIST;

Parameter Description

item type Identifies the parameter that is being supplied in this element.

item_length The number of bytes in the item_buffer that constitute the value of the
parameter.

item A pointer to a memory location where the value of the parameter is
stored.

Some common item list definitions appear on the next page.

NetWeave API Reference Manual Version 2.0

January 2003 190

NetWeave API Reference Manual Version 2.0

January 2003 191

Common Item List Definitions

Assigning a Constant Length Value to a Parameter

long RBA; /*RBA holds the relative byte address for UNIX flat file.*/
NWDS_ITEM_LIST I_list [2];

/*Load the item list to pass to nwds_file_position.*/
I_list[0] . type = NWDS_CFILE_FTELL;
I_list[0] . length = sizeof(long);
I_list[0] . item = &RBA;

I_list[1] . type = NWDS_END_OF_LIST; /*terminates the list—required*/

Assigning a Variable Length Value to a Parameter

short primary_key = 0; /*Enscribe primary keyspecifier*/
short exact_mode = NWDS_TAN_EXACT_POS;
/*primary_key_value will be set to the key value to match*/
char primary_key_value [30];

NWDS_ITEM_LIST I_list [4];

/*Prepare the item list to pass to nwds_file_position.*/
I_list[0] . type = NWDS_TAN_KEYID;
I_list[0] . length = (NWDS_SIZE)sizeof(short);
I_list[0] . item = &primary_key;

I_list[1] . type = NWDS_TAN_MODE;
I_list[1] . length = (NWDS_SIZE)sizeof(short);
I_list[1] . item = &exact_mode;

I_list[2] . type = NWDS_TAN_KEYVALUE;
/*I_list[2] . length—set by the program*/
I_list[2] . item = primary_key_value;

I_list[3] . type = NWDS_END_OF_LIST;/*terminates the list – required*/

NetWeave API Reference Manual Version 2.0

January 2003 192

NetWeave API Reference Manual Version 2.0

January 2003 193

Message Queue (FIFO) Files

The FIFO (for First-In, First-Out) messaging queue provides a simple and robust interface for store-
and-forward message delivery in a heterogeneous computing environment. A process that writes to a
FIFO is called a producer; a process that reads from a FIFO is called a consumer. Messages written to a
FIFO are appended to the end (tail) of the queue, while messages read from a FIFO are taken from the
beginning (head) of the queue.

A FIFO queue is implemented as a ring of segments. You specify the size and number of segments
when you create the FIFO, and each segment is stored as a record in a special file that NetWeave
maintains. The local file system determines the maximum segment size (i.e. the maximum record size
that is supported by the file system). One message may span multiple segments. The maximum message
size is nwds_max_user_size.

When you set up the FIFO queue, make it local to a producer and remote to a consumer. This way, even
if the communications layer fails, the producer is not interrupted. When communications are restored,
the consumer(s) may resume processing the queue.

There are two ways to read messages from the queue:

• Using a single call to read the message and advance the head pointer. This gives better
throughput and is intended for applications where more than one consumer process reads
messages from the queue.

• Using two calls: the first to read the message, and the second (nwds_file_position) to
advance the pointer. The two-call method (also called transaction mode) supports transaction
processing because you can continue to reread a message until the head pointer is advanced to
the next one.

For applications that read a queue by calling nwds_file_read asynchronously, NetWeave allows
the read to complete either immediately with the error NWDS_EOF, or whenever a producer adds the
next message to the queue. Because the read is asynchronous, the program is not blocked while waiting
for its next message. Also, because NetWeave completes the read operation when the next message is
added, the program does not poll the queue when it is empty.

Use the following functions for the message queue option:

Function Description

nwds_file_close Closes a message queue.

nwds_file_create Creates a message queue.

nwds_file_info Retrieves information about a queue.

nwds_file_open Opens a message queue.

nwds_file_position Completes a transaction involving a queue.

nwds_file_read Reads the first message from the queue.

nwds_file_remove Purges a message queue.

nwds_file_write Appends a message to the end of the queue.

NetWeave API Reference Manual Version 2.0

January 2003 194

Generic C Files

A C file is a stream of bytes without any structure or indexing. Most platforms implement flat file
structures that may be accessed from the standard I/O library of C.

NetWeave API Reference Manual Version 2.0

January 2003 195

NetWeave Kernel Functions for Windows NT

A NetWeave kernel function provides access to those proprietary features of the NT operating system
that applications must share with NetWeave. NT is the only Microsoft Windows operating system for
which kernel functions are provided.

You can use kernel functions to integrate asynchronous applications with NetWeave’s API. Systems
applications that need to wait on an event must use the NetWeave kernel functions to define both the
object, and the callback function to associate with the object.

To implement fully asynchronous operation, NetWeave uses the NT systems call
WaitForMultipleObjects and what are called NT-waitable objects. (In the NT environment, you
can use waitable objects to signal a change of state – typically, to notify an application that an OS
function call has completed.) Because NetWeave also uses waitable objects to synchronize its activities,
there is a potential conflict between the NetWeave library and any applications that use NetWeave
function calls. The kernel routines provide a way for the application to tell NetWeave about additional
objects that it needs to wait for.

This section discusses the following kernel functions:

• nwds_nt_clear_event
• nwds_nt_define_event

NetWeave API Reference Manual Version 2.0

January 2003 196

NetWeave API Reference Manual Version 2.0

January 2003 197

NWDS_NT_CLEAR_EVENT

This function deregisters an object from the list of application objects on which NetWeave has to wait.

NWDS_ERRNO nwds_nt_clear_event (
 long hEvent);

Parameter Input Output Description

hEvent
a

The object (Win32 handle) to be removed from the list
on which NetWeave waits.

Return Code (output)

Return code Description

NWDS_SUCCESSFUL The object was removed.

NWDS_PROCESS_NOT_FOUND Invalid or unknown hEvent.

NetWeave API Reference Manual Version 2.0

January 2003 198

NetWeave API Reference Manual Version 2.0

January 2003 199

NWDS_NT_DEFINE_EVENT

The nwds_nt_define_event function specifies which application objects NetWeave must wait
for. The callback function is an application function that NetWeave will call when the defined event is
notified.

NWDS_ERRNO nwds_nt_define_event (
 long hEvent,
 NWDS_CALL_BACK *completion);

Parameter Input Output Description

hEvent a The Win32 handle to monitor.

completion
a

A pointer to the callback structure. This pointer cannot
be NULL.

Return Code (output)

Return code Description

NWDS_SUCCESSFUL Registration was completed successfully.

NWDS_NO_MEMORY Fatal error: insufficient heap space (the system is
overloaded).

NWDS_DUPLICATE_PROCESS The Win32 handle is already registered.

NetWeave API Reference Manual Version 2.0

January 2003 200

NetWeave Kernel Functions for UNIX

A NetWeave kernel function provides access to some proprietary feature of the operating system that an
application must share with NetWeave. This section describes the NetWeave kernel functions for UNIX
systems including Solaris, HPUX, AIX, Linux and DECUNIX TRU64.

You can use kernel functions to integrate asynchronous applications with NetWeave’s API. NetWeave
uses the select() function in the socket's library to wait for events to occur asynchronously. You may
add your own socket to the list of sockets on which NetWeave waits. Because NetWeave must control
the waiting process, any systems applications that need to wait on a socket event must use the
NetWeave kernel functions to do so.

This section discusses the following kernel functions:

• nwds_ux_clear_event
• nwds_ux_define_event

NetWeave API Reference Manual Version 2.0

January 2003 201

NetWeave API Reference Manual Version 2.0

January 2003 202

NWDS_UX_CLEAR_EVENT

The nwds_ux_clear_event function removes a socket descriptor from the list of application file
descriptors that NetWeave is waiting for.

NWDS_ERRNO nwds_ux_clear_event (
 int fileDescriptor,
 int readMask,
 int writeMask);

Parameter Input Output Description

fileDescriptor a The descriptor to remove from the list.

readMask a Set to True or False to match the original setting when
the mask was defined in nwds_ux_define_event.

writeMask a Set to True or False to match the original setting when
the mask was defined in nwds_ux_define_event.

Return Code (output)

Return code Description

NWDS_BAD_PARAMETER readMask or writeMask is not specified.

NWDS_SUCCESSFUL The event flag was cleared.

NetWeave API Reference Manual Version 2.0

January 2003 203

NetWeave API Reference Manual Version 2.0

January 2003 204

NWDS_UX_DEFINE_EVENT

The nwds_ux_define_event function tells NetWeave which application sockets it has to wait for.
The read callback function is an application function that NetWeave calls when the socket has data. The
write callback function is an application function that NetWeave calls when the socket becomes
writeable.

If the permanent parameter is TRUE, you must use nwds_ux_clear_event to remove the socket
descriptor from the list for which NetWeave waits. If FALSE, NetWeave waits once and then removes
the descriptor automatically.

NWDS_ERRNO nwds_ux_define_event (
 int fileDescriptor,
 int permanent,
 NWDS_CALL_BACK *readCompletion,
 NWDS_CALL_BACK *writeCompletion);

Parameter Input Output Description

fileDescriptor a The file descriptor that NetWeave must monitor.

permanent a Set to TRUE if you intend to remove this event by a
call to nwds_ux_clear_event.

readCompletion a A pointer to the read callback structure. It cannot be
NULL.

writeCompletion a A pointer to the write callback structure. It cannot be
NULL.

Return Code (output)

Return code Description

NWDS_BAD_PARAMETER One of the completion structures is invalid.

NWDS_NO_MEMORY Fatal error: insufficient heap space.

NetWeave API Reference Manual Version 2.0

January 2003 205

NetWeave Kernel Functions for DEC, VMS, and OpenVMS

A NetWeave kernel function provides access to those proprietary features of the operating system that
applications must share with NetWeave. This section describes the NetWeave kernel functions for VMS
and OpenVMS.

You can use kernel functions to integrate asynchronous applications with NetWeave’s API. NetWeave
uses Asynchronous System Traps (ASTs) to notify a kernel layer that read or write has completed on a
communications channel. The NetWeave kernel layer uses event flags to coordinate and synchronize
service calls made on behalf of remote applications. Because NetWeave must control the waiting
process, any systems applications that need to wait on an event must use the NetWeave kernel functions
to do so.

In the DEC environment, you can use waitable objects to signal a change of state – typically, to notify
an application that an OS function call has completed. Because NetWeave also uses event flags to
synchronize its activit ies, there is a potential conflict between the NetWeave library and any
applications that use NetWeave function calls. The kernel routines provide a mechanism that the
application can use to tell NetWeave about additional event flags that it needs to wait for.

This section discusses the following kernel functions:

• nwds_vms_clear_event
• nwds_vms_define_event

NetWeave API Reference Manual Version 2.0

January 2003 206

NetWeave API Reference Manual Version 2.0

January 2003 207

NWDS_VMS_CLEAR_EVENT

The nwds_vms_clear_event function deregisters an event flag from the list of application event
flags that NetWeave is waiting for.

NWDS_ERRNO nwds_vms_clear_event (
 int event_flag);

Parameter Input Output Description

event_flag a The event flag number to be cleared.

Return Code (output)

Return code Description

NWDS_PROCESS_NOT_FOUND Invalid or unknown event flag number.

NWDS_SUCCESSFUL The event flag was cleared.

NetWeave API Reference Manual Version 2.0

January 2003 208

NetWeave API Reference Manual Version 2.0

January 2003 209

NWDS_VMS_DEFINE_EVENT

The nwds_vms_define_event function tells NetWeave which application event flags it has to
wait for. The callback function is an application function that NetWeave calls after an event flag has
been set. NetWeave does not set or clear an application event flag.

NWDS_ERRNO nwds_vms_define_event (
 int event_flag,
 NWDS_CALL_BACK *completion);

Parameter Input Output Description

event_flag a The event flag number that NetWeave must monitor.

completion a A pointer to the callback structure. It cannot be NULL.

Return Code (output)

Return code Description

NWDS_DUPLICATE_PROCESS The event flag is already set.

NWDS_NO_MEMORY Fatal error: insufficient heap space.

NWDS_SUCCESSFUL The event flag was set.

NetWeave API Reference Manual Version 2.0

January 2003 210

NetWeave Kernel Functions For Tandem

A NetWeave kernel function provides access to some proprietary feature of the operating system that an
application must share with NetWeave. You can use kernel functions to integrate asynchronous
applications with NetWeave’s API. The Kernel Library provides the callback mechanism for the
Tandem. Because the NetWeave function calls use the kernel library to implement the asynchronous
API, you must use the kernel library for multithreaded asynchronous applications.

There are two distinct groups of functions in the kernel library for Tandem. One group manages
asynchronous operations on files; the other manages asynchronous responses to system messages. Each
group has a unique data structure and unique function prototype associated with it. First we describe the
structure and prototype associated with asynchronous file I/O. Then we will review the structure and
prototype for processing system messages.

This section discusses the following kernel functions:

• nwds_kernel_call_back
• nwds_kernel_recv_call_back
• nwds_tandem_awaitiox
• nwds_tandem_clear_events
• nwds_tandem_clear_system_events
• nwds_tandem_define_event
• nwds_tandem_define_system_event
• nwds_tandem_replyx
• nwds_tandem_receiveinfo

NetWeave API Reference Manual Version 2.0

January 2003 211

NetWeave API Reference Manual Version 2.0

January 2003 212

NWDS_KERNEL_CALL_BACK

This structure has two elements that are analogous to the elements of the regular callback structure.
User_context is a pointer to allocated memory where the application identifies the situation in
which this file I/O event occurs. The callback procedure is unique to file I/O events.

Typedef struct {
 NWDS_CONTEXT userContext,
 NWDS_KERNEL_CALL_BACK_PROC *procedure
} NWDS_KERNEL_CALL_BACK;

The procedure prototype for a NWDS_KERNEL_CALL_BACK_PROC looks like this:

typedef void (NWDS_KERNEL_CALL_BACK_PROC) (
 short fileHandle,
 void *buffer,
 short length,
 short guardianError,
 long userTag,
 void *userContext
);

Parameter Input Output Description

fileHandle
a

The Guardian file number where an I/O has just
completed.

buffer
a

The address of an area in the user’s data space where
the message is returned.

length a The number of bytes in the message in the buffer.

guardianError
a

The Guardian error code associated with the I/O.
0 means success; any other value indicates a problem.

userTag
a

The tag specified when the I/O was initiated by a call to
NWDS_TANDEM_DEFINE_EVENT.

userContext
a

The same pointer as the structure’s userContext
parameter. Whatever you pass to NetWeave, NetWeave
returns to you.

NetWeave API Reference Manual Version 2.0

January 2003 213

NetWeave API Reference Manual Version 2.0

January 2003 214

NWDS_KERNEL_RECV_CALL_BACK

Applications use this structure to tell NetWeave how to respond to system messages. The Tandem
Guardian operating system posts special system messages to an application to alert it to unsolicited
external events. The functions NWDS_TANDEM_DEFINE_SYSTEM_EVENT and
NWDS_TANDEM_CLEAR_SYSTEM_EVENTS enable an application to tell NetWeave which system
messages (events) it wishes to monitor and how to react to them.

typedef struct {
 NWDS_CONTEXT userContext;
 NWDS_KERNEL_RECV_CALL_BACK_PROC *procedure;
} NWDS_KERNEL_RECV_CALL_BACK;

The userContext is a pointer to the application's memory space where the application identifies
what is happening. The callback procedure contains parameters designed to return all the information
that Guardian provides with the message.

typedef NWDS_MSG_USED (NWDS_KERNEL_RECV_CALL_BACK_PROC) (
 void *buffer,
 short length,
 short guardianError,
 long userTag,
 NWDS_RECEIVEINFO *info,
 void *userContext
);

Parameter Input Output Description

buffer
a

The address of an area in the user’s data space where the
message is returned.

length a The number of bytes in the message in the buffer.

guardianError
a

The Guardian error code associated with the I/O.
0 means success; any other value indicates a problem.

userTag
a

The tag specified when the I/O was initiated by a call to
NWDS_TANDEM_DEFINE_EVENT.

info
a

This structure contains the information obtained from
Guardian, described below.

userContext
a

The userContext you passed to NetWeave is returned to
you.

The NWDS_RECEIVEINFO structure contains information obtained from Guardian on the application's
behalf. NetWeave calls the Guardian procedure FILE_GETRECEIVEINFO to populate this structure.
For detailed information about this structure, see the Guardian Procedures Calls manual. NetWeave

NetWeave API Reference Manual Version 2.0

January 2003 215

provides the function NWDS_TANDEM_RECEIVEINFO to retrieve this information about a user
message. For more information about this function, see page 227.

typedef struct {
 short io_type;
 short max_reply_count;
 short msg_tag;
 short file_num;
 short sync_id[2];
 short sender_process_handle[10];
 short open_label;
} NWDS_RECEIVEINFO;

Parameter Description

io_type Type of I/O caller.

max_reply_count Maximum number of bytes for call to reply().

msg_tag Tag to use in call to reply().

file_num Sender's file number.

sync_id The sync ID associated with this message.

sender_process_handle Process handle of the process that sent the last message.

open_label The value assigned by the application to the open connection on
which the received message was sent.

The user's callback procedure must return a value that NetWeave interrogates to determine whether
additional actions are required. The legitimate return codes for your procedures are:

NWDS_RECV_MSG_USED = 1
NWDS_RECV_MSG_NOT_USED = 2

NetWeave API Reference Manual Version 2.0

January 2003 216

NWDS_TANDEM_AWAITIOX

Use the NWDS_TANDEM_AWAITIOX function instead of the standard Guardian AWAITIOX call to
complete an asynchronous I/O. (For COBOL users on Tandem, the function is named
nwds_tand_awaitiox.)

NWDS_ERRNO NWDS_TANDEM_AWAITIOX (
 short *user_filenumber,
 void *user_buffer,
 short *user_buffer_length,
 long *user_tag,
 NWDS_RECEIVEINFO **receiveinfo,
 short *user_error,
 long user_timeout,
 short loop_forever);

Parameter Input Output Description

user_filenumber a The Guardian file number of the I/O that just
completed.

user_buffer
 a

The address of the area where the message is stored.
Note for COBOL users: this parameter does not exist
for the COBOL version of this call.

user_buffer_length a The length of the message in the user_buffer.

user_tag a The tag associated with the I/O when it was initiated.

receiveinfo
 a

The location of the NWDS_RECEIVEINFO structure that
describes this request. For more information, see
NWDS_KERNEL_RECV_CALL_BACK on page 214

user_error a The Guardian error code from the I/O completion.

user_timeout
a

The length of time (in hundredths of a second) to wait
for the I/O to complete. If this value is negative,
NetWeave waits forever.

loop_forever
a

A logical that implements polling. If TRUE, the call is
repeated with the same timeout value until an I/O
completes.

NetWeave API Reference Manual Version 2.0

January 2003 217

NetWeave API Reference Manual Version 2.0

January 2003 218

NWDS_TANDEM_CLEAR_EVENTS

The nwds_tandem_clear_events function removes the callback(s) associated with either all
callbacks, or a specified file number.

NWDS_ERRNO NWDS_TANDEM_CLEAR_EVENTS (
 short file_number,
 long tag
 short error);

Parameter Input Output Description

file_number
a

The Guardian file number returned from OPEN.
If negative, all callbacks on all the user’s files are cleared.

tag
a

The tag specified when a particular I/O was initiated by a
call to NWDS_TANDEM_DEFINE_EVENT. If negative, all
callbacks for the file_number are cleared.

error a A Guardian error code to pass to the callback(s).

NetWeave API Reference Manual Version 2.0

January 2003 219

NetWeave API Reference Manual Version 2.0

January 2003 220

NWDS_TANDEM_CLEAR_SYSTEM_EVENTS

This function removes the callback associated with a specified Guardian system error number. For more
information, see nwds_Tandem_define_system_event on page 222.

NWDS_ERRNO NWDS_TANDEM_CLEAR_SYSTEM_EVENTS (
 Short system_message_number,
 NWDS_KERNEL_RECV_CALL_BACK *call_back);

Parameter Input Output Description

system_message_number
a

The Guardian system error number whose
associated callback you want to remove. If this
number is negative, all callbacks on all the
user’s system error codes are cleared.

call_back
a

The pointer to the callback function that a call
to NWDS_TANDEM_DEFINE_SYSTEM_EVENT
originally associated with the system message
code.

NetWeave API Reference Manual Version 2.0

January 2003 221

NetWeave API Reference Manual Version 2.0

January 2003 222

NWDS_TANDEM_DEFINE_EVENT

The nwds_tandem_define_event function associates an I/O operation on the specified file with
a callback function and specific program context. When the I/O completes, the callback function is
called with one argument being the program context.

An application that calls the NetWeave API must never call the Guardian procedure awaitio(x).
If your application must wait for I/O on a file unknown to NetWeave, you must call the NetWeave
function NWDS_TANDEM_AWAITIOX.

NWDS_ERRNO NWDS_TANDEM_DEFINE_EVENT (
 short file_number,
 long tag,
 long timeout,
 short permanent,
 NWDS_ITEM_LIST *item_list,
 NWDS_KERNEL_CALL_BACK *call_back);

Parameter Input Output Description

file_number a The Guardian file number returned from OPEN.

tag
a

The tag specified when the I/O was initiated by a call to
NWDS_TANDEM_DEFINE_EVENT.

timeout
a

The length of time in centi-seconds to wait for the I/O to
complete. If timeout is negative, wait is forever.

permanent
a

A logical that indicates whether the callback is
associated with only the next I/O or all subsequent I/O
on this file number. Two constants are provided for this
parameter:

• NWDS_NOT_PERMANENT (default): the callback
applies only to the next I/O

• NWDS_PERMANENT: the callback is associated with
all I/Os

item_list
a

A pointer to an array of system-specific parameters. No
item types are presently defined for the kernel library.

call_back
a

A pointer to the kernel callback structure. Unlike the
standard API, this cannot be NULL.

NetWeave API Reference Manual Version 2.0

January 2003 223

NetWeave API Reference Manual Version 2.0

January 2003 224

NWDS_TANDEM_DEFINE_SYSTEM_EVENT

The nwds_tandem_define_system_event function provides notification of system messages.
This function call must include the system message number and the callback function pointer, and
indicate whether this registration is permanent.

NWDS_ERRNO NWDS_TANDEM_DEFINE_SYSTEM_EVENT (
 short system_message_number,
 short permanent,
 NWDS_ITEM_LIST *item_list,
 NWDS_KERNEL_RECV_CALL_BACK *call_back);

Parameter Input Output Description

system_message_number a A Guardian system number.

permanent
a

A logical that indicates whether the callback is
associated with only the next I/O or all
subsequent I/O on this system message
number. Two constants are provided for this
parameter:

• NWDS_NOT_PERMANENT: the callback
applies only to the next I/O

• NWDS_PERMANENT (default): the callback
is associated with all I/Os

item_list
a

A pointer to an array of system-specific
parameters. No item types are presently defined
for the kernel library.

call_back
a

A pointer to a kernel receive callback structure.
This cannot be NULL.

NetWeave API Reference Manual Version 2.0

January 2003 225

NetWeave API Reference Manual Version 2.0

January 2003 226

NWDS_TANDEM_REPLYX

The nwds_tandem_replyx function, which mimics the behavior of Guardian’s replyx system
call, gives Pathway server programmers additional flexibility and an alternative to nwds_ipc_write
for returning replies. To use nwds_tandem_replyx, you should retrieve at least two parameters
(max_reply_count and msg_tag) from the nwds_receiveinfo structure associated with the
original request message.

For more information, see nwds_tandem_receiveinfo on page 227.

Typedef struct {
 short io_type; /*returns type of I/O caller used (write,
writeread, etc)*/
 short max_reply_count;/*returns max # bytes for call to reply()*/
 short msg_tag; /*returns tag to use in call to reply()*/
 short file_num; /*returns sender’s file num*/
 short sync_id[2]; /*The sync ID associated with this message*/
 short sender_process_handle[10];
 short open_label;
} NWDS_RECEIVEINFO;

NWDS_ERRNO NWDS_TANDEM_REPLYX (
 short tag,
 short reply_length,
 void *reply,
 short error);

Parameter Input Output Description

tag
a

The message tag parameter (msg_tag) from
nwds_receiveinfo.

reply_length
a

The length in bytes of the reply message. This amount
must not exceed the max_reply_count from
nwds_receiveinfo.

reply a The address of the location containing the reply.

error a This parameter may contain a Guardian error code to
return to the calling application.

NetWeave API Reference Manual Version 2.0

January 2003 227

NetWeave API Reference Manual Version 2.0

January 2003 228

NWDS_TANDEM_RECEIVEINFO

The nwds_tandem_receiveinfo function gives Pathway server programmers more information
about request messages. This function mimics the behavior of Guardian’s
FILE_GETRECEIVEINFO_ system call and returns the following information:

typedef struct {
 short io_type;
 short max_reply_count;
 short msg_tag;
 short file_num;
 short sync_id[2];
 short sender_process_handle[10];
 short open_label;
} NWDS_RECEIVEINFO;

NWDS_ERRNO NWDS_TANDEM_REPLYX (
 NWDS_HANDLE handle,
 NWDS_RECEIVEINFO *receive_info);

Parameter Input Output Description

handle
a

The process handle returned from the call to
nwds_ipc_accept.

receive_info
a a

The location where the receive_info structure will be
stored.

NetWeave API Reference Manual Version 2.0

January 2003 229

Return Codes and Recovery

The table below lists the NetWeave return codes provided by the function nwds_error_text and
gives suggestions for recovering from common problems. Please keep in mind the following:

• Where recovery is listed as “None,” a system fault has occurred that an application would not
or could not normally address. If the error is associated with a connection or a file, the
associated entity should be closed and re-opened. If the error occurs outside of a connection or
file (for example, in a general purpose facility such as nwds_init), the application should
seriously consider logging a message and terminating.

• Codes marked Discontinued are no longer used and should never occur.
• The designation Exceptional user condition means that an internal fault has occurred. Please

contact NetWeave support and be ready to provide the error traces and INI file for the program
that received the error.

Return code It means Suggested recovery

NWDS_ABORTED_BY_USER Transaction is
aborted by user

None.

NWDS_ACCESS_VIOLATION Access
violation

File security is enabled and the current user does
not have access to the Guardian file. You should
log in as a user who has the proper authority to
view or update the file.

NWDS_ALREADY_EXISTS File already
exists

None. This condition is returned when someone
tries to create a file or queue that already exists.

NWDS_BAD_ADDRESS Invalid network
address

Exceptional user condition. Please contact
NetWeave support with the error traces and INI
file for the program that received the error.

NWDS_BAD_HANDLE Invalid
NetWeave
handle

You are trying to reuse a handle that has
become invalid, usually because a file or
connection was closed. Usually indicates a
coding mistake by the user.

NWDS_BAD_INI_PARAMETER Invalid/missing
INI file
parameter

See the error log to determine which INI file
parameter is improper. Check and update your
INI file, then retry the application.

NWDS_BAD_PARAMETER Bad parameter
passed

You are trying to call a function but one of your
parameters is out of range. Usually indicates a
coding mistake by the user. For more
information, see the error log.

NWDS_BAD_PROCESS_NAME Bad process
name

Indicates a coding mistake by a Alpha/Open
VMS user. You are trying to start a process with
a name that is already in use. Stop the older
version of the program.

NetWeave API Reference Manual Version 2.0

January 2003 230

Return code It means Suggested recovery

NWDS_BAD_PROTOCOL Invalid network
protocol

You are trying to make a connection over a
communications protocol that your library does
not support. Check for errors in your INI file.

NWDS_BAD_SERVER_NAME Invalid
NetWeave
server name

This is usually a coding error that results from
passing a name that is either empty or too long.
For more information, see the error log

NWDS_CANNOT_REGION_
LOCK

NWDS_CI2_NOT_LOCKED

NWDS_CI2_NOT_OUR_LOCK

NWDS_CI2_SELF_LOCKED

Discontinued

NWDS_DATA_OVERFLOW Data overflow More data is available than the user is prepared
to receive. Review the specifications about the
maximum messages you expect to send and
receive, and adjust program parameters
accordingly.

NWDS_DDL_INVALID_FIELD Invalid DDL
field

The INI file is invalid. One of the data types is not
recognized.

NWDS_DDL_MISSING_FIELD Missing DDL
field

The INI file is invalid. An expected field is
missing. Check and update your INI file.

NWDS_DDL_NOT_DEFINED DDL_ENTRY
not set for
name

The INI file is incomplete or the message name
does not match the group in the INI file that
contains the metadata to describe the message.
Check and update your INI file.

NWDS_DDL_SIZE_MISMATCH DDL size does
not match file

The data and data type are inconsistent.

NWDS_DELETE_FAILED Delete failed NWDS_TANDEM_CLEAR_TIMER_EVENTS
returns this code when it cannot locate the event.
If this occurs in well-tested procedures, it is an
exceptional user condition.

NWDS_DELETED_RECORD

NWDS_DIRECTORY_EXISTS

Discontinued

NWDS_DISK_ERROR Disk error
received

None. For more information, see the error log.

NWDS_DLL_IN_USE

NWDS_DLL_NOT_LOADED

Discontinued

NetWeave API Reference Manual Version 2.0

January 2003 231

Return code It means Suggested recovery

NWDS_DUPLICATE_PROCESS Duplicate
process name

This runtime error is usually caused by an
attempt to run an Agent or application server
more than once.

NWDS_EOF End of file The user must evaluate the context of this
condition to decide whether it is an expected or
exceptional condition.

NWDS_EXECUTE_FAILED Execute image
failed

This code is specific to IBM/CICS. If it occurs
during runtime, a long-running transaction may
be running already.

NWDS_FILE_EXISTS Discontinued

NWDS_FILE_IN_USE File is currently
in use

A second user is trying to access a non-shared
file.

NWDS_FILE_IS_FULL File is full None.

NWDS_FILE_MODIFIED_
DURING_READS

Discontinued.

NWDS_FILE_NOT_FOUND File not found The user must decide whether this is a problem
or a non-fatal condition.

NWDS_FILE_NOT_OPEN File has not
been opened

You are trying to access a file that is not open.
This usually indicates a coding mistake by the
user. For more information, see the error log.

NWDS_ILLEGAL_FILENAME Illegal file
specification

The name is either blank, too long, or improper
syntax for the remote system.

NWDS_INDEX_NOT_FOUND

NWDS_INI_FILE_NOT_FOUND

NWDS_INI_FILE_NOT_OPEN

NWDS_INIT_ERROR

NWDS_INVALID_DUPLICATE_
KEY

Discontinued

NWDS_INVALID_FILE_TYPE Invalid file type The file is not a FIFO. For more information, see
the error log.

NWDS_INVALID_IO_OPERATION Invalid I/O
operation

This error is specific to Tandem Guardian. The
user is trying to perform an action that is not
supported for the target file type.

NWDS_INVALID_ITEM Invalid item An item in an item list is not of the proper data
type or the value is out of range.

NWDS_INVALID_KEYED_
RELATION

Discontinued

NetWeave API Reference Manual Version 2.0

January 2003 232

Return code It means Suggested recovery

NWDS_INVALID_OPERATION Invalid
operation

The attempted operation is not appropriate to the
target object. For example, trying to write to a file
opened for read access. For more information,
see the error log.

NWDS_INVALID_RECORD_
NUMBER

Invalid record
number

This code is specific to Alpha/Open VMS and
means that the record number is out of range.

NWDS_INVALID_RECORD_SIZE

NWDS_INVALID_SUBSTITUTION

Discontinued

NWDS_INVALID_TRANSACTION_
ID

Invalid
transaction ID

The transaction is no longer active.

NWDS_IO_NOT_PROCESSED Asynchronous
I/O not
processed

This condition is typical in the Tandem Guardian
environment where a user application expects to
receive messages about which NetWeave knows
nothing.

NWDS_IO_PROCESSED Asynchronous
I/O processed

This is the normal completion code for calls to
NWDS_TANDEM_AWAITIOX. NetWeave has
processed the message; retry the operation.

NWDS_ISCALL

NWDS_ISHANGUP

NWDS_ISNEWCLIENT

NWDS_ITEM_INDEX

Discontinued

NWDS_KERNEL_NOT_
INITIALIZED

Kernel not
initialized

This is an exceptional user condition. Please
contact NetWeave support with the error traces
and INI file for the program that received the
error.

NWDS_KEY_MUST_BE_EXPLICIT Discontinued

NWDS_LIBRARY_ERROR Library error This is an exceptional user condition. Please
contact NetWeave support with the error traces
and INI file for the program that received the
error.

NWDS_LINK_DOWN Communication
link is down

The user must assess whether this is a fatal or
normal condition for the current circumstance.

NWDS_LOGON_DENIED Logon denied The user is not authorized to access the remote
system.

NWDS_LOGON_DISABLED Logon disabled nwds_logon attempted but security is not
enabled for this connection.

NWDS_LONG_RECORD Discontinued

NetWeave API Reference Manual Version 2.0

January 2003 233

Return code It means Suggested recovery

NWDS_MAX_SERVERS_
RUNNING

Maximum
servers running

This code is specific to Tandem SQL/MP.
Increase the servers or try later.

NWDS_MUST_LOCK_IMPLICITLY Discontinued

NWDS_NAME_NOT_FOUND Name not
found in INI file

The name does not match any group in the INI
file. Check and update your INI file.

NWDS_NO_DATA No data
available on
handle

Assess whether this is a fatal or normal condition
for this circumstance. If you did not expect an
error, see the error log for more information.

NWDS_NO_MEMORY Process out of
memory

None. The system is overloaded.

NWDS_NO_NWDS_TRANS_ID No Trans_ID
supplied

The transaction is no longer active. For more
information, see the error log.

NWDS_NO_OUTSTANDING_IO No outstanding
I/O

Usually indicates a coding problem: you have
called nwds_sleep and there are no outstanding
events. If this occurs in well-tested code, it is an
exceptional user condition.

NWDS_NO_TRANSACTION No transaction The transaction is no longer active. For more
information, see the error log.

NWDS_NO_TRANSACTION_
MONITORING

No transaction
monitoring

There is no TP monitor for this system.

NWDS_NOT_A_FILE Discontinued

NWDS_NOT_IMPLEMENTED Feature not
implemented

None. The function is not available on the current
platform.

NWDS_NOT_INITIALIZED All NetWeave functions must be called after
calling nwds_init() and before calling nwds_exit().
Call nwds_init() and re-issue the NetWeave
function call.

NWDS_NOT_ON_DIR Discontinued

NWDS_NOT_OPEN_FOR_
DELETE

File not open
for delete

NWDS_NOT_OPEN_FOR_
UPDATE

File not open
for update

This condition is specific for files on Alpha/Open
VMS. Verify that the file is being opened properly
for this type of operation.

NWDS_NOT_OPEN_FOR_WRITE File not open
for write

For FIFOs, you are trying to write to a FIFO using
a handle that is limited to reading messages.

NWDS_NOT_OPEN_WITH_INDEX File not open
with indexing

This condition is specific for files on Alpha/Open
VMS. Verify that the file is being opened properly
for indexed operations.

NetWeave API Reference Manual Version 2.0

January 2003 234

Return code It means Suggested recovery

NWDS_NOTHREAD No thread
active or
supplied

This is an exceptional user condition. Please
contact NetWeave support with the error traces
and INI file for the program that received the
error.

NWDS_OPEN_FAILED Open file failed The error log may contain additional information
about why you cannot open this file. Check the
INI file to verify that the name is spelled correctly
and that the path has not been changed.

NWDS_OPERATION_FAILED Operation
failed

Usually indicates a coding mistake by the user. If
this occurs in a well-tested program, treat it as an
exceptional user condition. For more information,
see the error log.

NWDS_PASSWORD_REQUIRED Password is
required after
logon

Supply the password by calling nwds_password.

NWDS_PENDING The operation has been initiated successfully.
Final status and data will be delivered to the
specified callback function.

NWDS_PORT_ALREADY_
ATTACHED

NWDS_PORT_NOT_ATTACHED

Discontinued

NWDS_POSITION_FAILED Position failed This is specific to Tandem TM/MP when
replicating structured files to a Guardian platform.
It is an exceptional user condition.

NWDS_POSITION_UNDEFINED Discontinued

NWDS_PROCESS_NOT_
CONNECTED

Process not
connected

nwds_session_close returns this condition if the
session is already closed.

NWDS_PROCESS_NOT_FOUND Process not
found

NWDS_READ_FAILED Read from file
failed

NWDS_RECORD_IN_USE Record in use

The error log should explain what happened. If it
doesn’t, treat this as an exceptional user
condition.

NWDS_RECORD_IS_LOCKED Record is
already locked

The attempt to lock a file record failed because
the record is already locked.

NetWeave API Reference Manual Version 2.0

January 2003 235

Return code It means Suggested recovery

NWDS_RECORD_NOT_FOUND

NWDS_RECORD_TOO_LONG

NWDS_RECORD_TOO_SHORT

NWDS_REJECTED

Discontinued

NWDS_REQUEST_DENIED Request denied
by server

The user is not authorized to perform the
function. For more information, see the error log.

NWDS_RESUBMIT_
TRANSACTION

Discontinued

NWDS_RMS_CLOSE_FAILED RMS close
failed

NWDS_RMS_CONNECT_FAILED RMS connect
failed

NWDS_RMS_CREATE_FAILED RMS create
failed

NWDS_RMS_DELETE_FAILED RMS delete
failed

NWDS_RMS_ERASE_FAILED RMS erase
failed

This condition is specific for files on Alpha/Open
VMS. Obtain the VMS/RMS error code from the
NetWeave error log and contact NetWeave
Technical Support for a problem diagnosis.

NWDS_RMS_NODE_NAME

NWDS_RMS_SEARCHLIST

Discontinued

NWDS_RMS_UPDATE_FAILED RMS update
failed

This condition is specific for files on Alpha/Open
VMS. Get the VMS/RMS error code from the
NetWeave error log, and contact NetWeave
Technical Support to diagnose the problem.

NWDS_RMS_WILDCARDS Wildcard error This condition is specific for files on Alpha/Open
VMS and indicates that a name with wildcard
characters is not permitted in this context.

NWDS_SECURITY_VIOLATION Security
violation

This user’s access privileges do not allow this
action. For more information, see the error log.

NWDS_SEEK_FAILED Seek to
position in file
failed

The record does not exist or the position
parameters are out of range for this system.

NWDS_SQL_BAD_PASSWORD

NWDS_SQL_BAD_USERNAME

Discontinued

NetWeave API Reference Manual Version 2.0

January 2003 236

Return code It means Suggested recovery

NWDS_SQL_ERROR Error from SQL
Server

Many different conditions can cause this code.
For more information, see the error log.

NWDS_SQL_INVALID_COLUMN Invalid SQL
column index

The column name does not occur in this
table.

NWDS_SQL_INVALID_VERB Invalid SQL
verb for call

The SQL statement is improper.

NWDS_SQL_LOGON_FAILED

NWDS_STALE_ROW

Discontinued

NWDS_STOP_FAILED Stop process
failed

This code is specific to Alpha/Open VMS. Stop
the process from the system console.

NWDS_SYSTEM_NOT_FOUND System node
not recognized

For IBM/CICS: the monitor has restarted the
router or the TCP/IP helper process. Any remote
connections must be reestablished.

For Tandem, Guardian error 18 was returned on
a system call, and the connection must be
restarted/reestablished.

NWDS_TAPE_PAST_EOT Discontinued

NWDS_TIMEOUT Operation
timed out

An operation timed out.

NWDS_TP_NOT_INITIALIZED No transaction
monitor
supported

None. The TP monitor is not operating.

NWDS_TRANSACTION_
ABORTED

Transaction
was aborted

NWDS_TRANSACTION_ACTIVE Transaction is
active

None. This is an informational message.

NWDS_TRANSACTION_
COMMITTED

Discontinued

NWDS_TRANSACTION_
INCOMPLETE

Transaction
incomplete

None. This is an informational message.

NWDS_UPDATE_FAILED Update failed Exceptional user condition. Please contact
NetWeave support with the error traces and INI
file for the program that received the error.

NWDS_UX_USER_DATA_TO_
PROCESS

Discontinued

NetWeave API Reference Manual Version 2.0

January 2003 237

Return code It means Suggested recovery

NWDS_VMS_CREPRC_FAILED VMS
SYS$CREPRC
failed

NWDS_VMS_GETJPI_FAILED VMS
SYS$GETJPI
failed

This condition is specific for processes on
Alpha/Open VMS. The VMS System service
CREPRC (Create Process) or GETJPI (Get Job
Info) failed. See the NetWeave error log for more
information, and contact NetWeave technical
support for clarification.

NWDS_WOULD_BLOCK The system is
overloaded and
the call would
block now

Because the system cannot complete the
operation at this time, retry the call later.

NWDS_WRITE_FAILED Write to file
failed

This is usually a fatal condition. For more
information, see the error log.

NWDS_WRONG_VERSION Wrong version Discontinued

NWDS_ZERO_DATA_SIZE Attempt to write
zero data

You cannot specify a message length of zero.

NetWeave API Reference Manual Version 2.0

January 2003 238

Return Code Numeric Definitions

This section details the NetWeave status and error code de finitions and their numeric values. The Error
code definitions are listed in alphabetical order and numeric order for ease of reference.

NWDS Status Codes (Non-Error)

NWDS_SUCCESSFUL -1

NWDS_PENDING -2

NWDS_EOF -3

NWDS_ISCALL -4

NWDS_ISHANGUP -5

NWDS_REJECTED -6

NWDS_ISNEWCLIENT -7

NWDS_TRANSACTION_ACTIVE -8

NWDS_TRANSACTION_COMMITTED -9

NWDS_TRANSACTION_ABORTED -10

NWDS_PASSWORD_REQUIRED -11

NWDS Error Codes by Name

NWDS_ABORTED_BY_USER 234

NWDS_ACCESS_VIOLATION 114

NWDS_ALREADY_EXISTS 102

NWDS_BAD_ADDRESS 190

NWDS_BAD_HANDLE 189

NWDS_BAD_INI_PARAMETER 232

NWDS_BAD_PARAMETER 110

NWDS_BAD_PROCESS_NAME 149

NWDS_BAD_PROTOCOL 191

NWDS_BAD_SERVER_NAME 193

NWDS_CANNOT_REGION_LOCK 185

NWDS_CI2_NOT_LOCKED 204

NWDS_CI2_NOT_OUR_LOCK 205

NWDS_CI2_SELF_LOCKED 203

NWDS_DATA_OVERFLOW 121

NWDS_DDL_INVALID_FIELD 217

NetWeave API Reference Manual Version 2.0

January 2003 239

NWDS_DDL_MISSING_FIELD 216

NWDS_DDL_NOT_DEFINED 219

NWDS_DDL_SIZE_MISMATCH 218

NWDS_DELETE_FAILED 168

NWDS_DELETED_RECORD 161

NWDS_DIRECTORY_EXISTS 179

NWDS_DISK_ERROR 112

NWDS_DLL_IN_USE 230

NWDS_DLL_NOT_LOADED 229

NWDS_DUPLICATE_PROCESS 148

NWDS_EXECUTE_FAILED 147

NWDS_FILE_EXISTS 180

NWDS_FILE_IN_USE 104

NWDS_FILE_IS_FULL 111

NWDS_FILE_MODIFIED_DURING_READS 187

NWDS_FILE_NOT_FOUND 103

NWDS_FILE_NOT_OPEN 107

NWDS_ILLEGAL_FILENAME 105

NWDS_INDEX_NOT_FOUND 162

NWDS_INI_FILE_NOT_FOUND 200

NWDS_INI_FILE_NOT_OPEN 199

NWDS_INIT_ERROR 151

NWDS_INVALID_DUPLICATE_KEY 172

NWDS_INVALID_FILE_TYPE 181

NWDS_INVALID_IO_OPERATION 178

NWDS_INVALID_ITEM 206

NWDS_INVALID_KEYED_RELATION 165

NWDS_INVALID_OPERATION 122

NWDS_INVALID_RECORD_NUMBER 160

NWDS_INVALID_RECORD_SIZE 170

NWDS_INVALID_SUBSTITUTION 201

NWDS_INVALID_TRANSACTION_ID 209

NWDS_IO_NOT_PROCESSED 197

NWDS_IO_PROCESSED 196

NetWeave API Reference Manual Version 2.0

January 2003 240

NWDS_ITEM_INDEX 163

NWDS_KERNEL_NOT_INITIALIZED 207

NWDS_KEY_MUST_BE_EXPLICIT 164

NWDS_LIBRARY_ERROR 120

NWDS_LINK_DOWN 117

NWDS_LOGON_DENIED 214

NWDS_LOGON_DISABLED 213

NWDS_LONG_RECORD 175

NWDS_MAX_SERVERS_RUNNING 123

NWDS_MUST_LOCK_IMPLICITLY 184

NWDS_NAME_NOT_FOUND 220

NWDS_NO_DATA 195

NWDS_NO_MEMORY 152

NWDS_NO_NWDS_TRANS_ID 233

NWDS_NO_OUTSTANDING_IO 198

NWDS_NO_TRANSACTION 208

NWDS_NO_TRANSACTION_MONITORING 210

NWDS_NOT_A_FILE 182

NWDS_NOT_IMPLEMENTED 118

NWDS_NOT_INITIALIZED 239

NWDS_NOT_ON_DIR 186

NWDS_NOT_OPEN_FOR_DELETE 131

NWDS_NOT_OPEN_FOR_UPDATE 130

NWDS_NOT_OPEN_FOR_WRITE 133

NWDS_NOT_OPEN_WITH_INDEX 132

NWDS_NOTHREAD 238

NWDS_OPEN_FAILED 143

NWDS_OPERATION_FAILED 113

NWDS_PORT_ALREADY_ATTACHED 188

NWDS_PORT_NOT_ATTACHED 177

NWDS_POSITION_FAILED 167

NWDS_POSITION_UNDEFINED 202

NWDS_PROCESS_NOT_CONNECTED 119

NWDS_PROCESS_NOT_FOUND 106

NetWeave API Reference Manual Version 2.0

January 2003 241

NWDS_READ_FAILED 144

NWDS_RECORD_IN_USE 173

NWDS_RECORD_IS_LOCKED 116

NWDS_RECORD_NOT_FOUND 166

NWDS_RECORD_TOO_LONG 171

NWDS_RECORD_TOO_SHORT 169

NWDS_REQUEST_DENIED 215

NWDS_RESUBMIT_TRANSACTION 231

NWDS_RMS_CLOSE_FAILED 142

NWDS_RMS_CONNECT_FAILED 141

NWDS_RMS_CREATE_FAILED 140

NWDS_RMS_DELETE_FAILED 135

NWDS_RMS_ERASE_FAILED 136

NWDS_RMS_NODE_NAME 137

NWDS_RMS_SEARCHLIST 138

NWDS_RMS_UPDATE_FAILED 134

NWDS_RMS_WILDCARDS 139

NWDS_SECURITY_VIOLATION 115

NWDS_SEEK_FAILED 146

NWDS_SQL_BAD_PASSWORD 225

NWDS_SQL_BAD_USERNAME 224

NWDS_SQL_ERROR 223

NWDS_SQL_INVALID_COLUMN 227

NWDS_SQL_INVALID_VERB 228

NWDS_SQL_LOGON_FAILED 226

NWDS_STALE_ROW 212

NWDS_STOP_FAILED 150

NWDS_SYSTEM_NOT_FOUND 109

NWDS_TAPE_PAST_EOT 174

NWDS_TIMEOUT 194

NWDS_TP_NOT_INITIALIZED 235

NWDS_TRANSACTION_INCOMPLETE 211

NWDS_UPDATE_FAILED 176

NWDS_UX_USER_DATA_TO_PROCESS 236

NetWeave API Reference Manual Version 2.0

January 2003 242

NWDS_VMS_CREPRC_FAILED 222

NWDS_VMS_GETJPI_FAILED 221

NWDS_WOULD_BLOCK 237

NWDS_WRITE_FAILED 145

NWDS_WRONG_VERSION 183

NWDS_ZERO_DATA_SIZE 192

NWDS Error Codes by numeric value

102NWDS_ALREADY_EXISTS

103NWDS_FILE_NOT_FOUND

104NWDS_FILE_IN_USE

105NWDS_ILLEGAL_FILENAME

106NWDS_PROCESS_NOT_FOUND

107NWDS_FILE_NOT_OPEN

109NWDS_SYSTEM_NOT_FOUND

110NWDS_BAD_PARAMETER

111NWDS_FILE_IS_FULL

112NWDS_DISK_ERROR

113NWDS_OPERATION_FAILED

114NWDS_ACCESS_VIOLATION

115NWDS_SECURITY_VIOLATION

116NWDS_RECORD_IS_LOCKED

117NWDS_LINK_DOWN

118NWDS_NOT_IMPLEMENTED

119NWDS_PROCESS_NOT_CONNECTED

120NWDS_LIBRARY_ERROR

121NWDS_DATA_OVERFLOW

122NWDS_INVALID_OPERATION

123NWDS_MAX_SERVERS_RUNNING

130NWDS_NOT_OPEN_FOR_UPDATE

131NWDS_NOT_OPEN_FOR_DELETE

132NWDS_NOT_OPEN_WITH_INDEX

133NWDS_NOT_OPEN_FOR_WRITE

134NWDS_RMS_UPDATE_FAILED

135NWDS_RMS_DELETE_FAILED

NetWeave API Reference Manual Version 2.0

January 2003 243

136NWDS_RMS_ERASE_FAILED

137NWDS_RMS_NODE_NAME

138NWDS_RMS_SEARCHLIST

139NWDS_RMS_WILDCARDS

140NWDS_RMS_CREATE_FAILED

141NWDS_RMS_CONNECT_FAILED

142NWDS_RMS_CLOSE_FAILED

143NWDS_OPEN_FAILED

144NWDS_READ_FAILED

145NWDS_WRITE_FAILED

146NWDS_SEEK_FAILED

147NWDS_EXECUTE_FAILED

148NWDS_DUPLICATE_PROCESS

149NWDS_BAD_PROCESS_NAME

150NWDS_STOP_FAILED

151NWDS_INIT_ERROR

152NWDS_NO_MEMORY

160NWDS_INVALID_RECORD_NUMBER

161NWDS_DELETED_RECORD

162NWDS_INDEX_NOT_FOUND

163NWDS_ITEM_INDEX

164NWDS_KEY_MUST_BE_EXPLICIT

165NWDS_INVALID_KEYED_RELATION

166NWDS_RECORD_NOT_FOUND

167NWDS_POSITION_FAILED

168NWDS_DELETE_FAILED

169NWDS_RECORD_TOO_SHORT

170NWDS_INVALID_RECORD_SIZE

171NWDS_RECORD_TOO_LONG

172NWDS_INVALID_DUPLICATE_KEY

173NWDS_RECORD_IN_USE

174NWDS_TAPE_PAST_EOT

175NWDS_LONG_RECORD

176NWDS_UPDATE_FAILED

NetWeave API Reference Manual Version 2.0

January 2003 244

177NWDS_PORT_NOT_ATTACHED

178NWDS_INVALID_IO_OPERATION

179NWDS_DIRECTORY_EXISTS

180NWDS_FILE_EXISTS

181NWDS_INVALID_FILE_TYPE

182NWDS_NOT_A_FILE

183NWDS_WRONG_VERSION

184NWDS_MUST_LOCK_IMPLICITLY

185NWDS_CANNOT_REGION_LOCK

186NWDS_NOT_ON_DIR

187NWDS_FILE_MODIFIED_DURING_READS

188NWDS_PORT_ALREADY_ATTACHED

189NWDS_BAD_HANDLE

190NWDS_BAD_ADDRESS

191NWDS_BAD_PROTOCOL

192NWDS_ZERO_DATA_SIZE

193NWDS_BAD_SERVER_NAME

194NWDS_TIMEOUT

195NWDS_NO_DATA

196NWDS_IO_PROCESSED

197NWDS_IO_NOT_PROCESSED

198NWDS_NO_OUTSTANDING_IO

199NWDS_INI_FILE_NOT_OPEN

200NWDS_INI_FILE_NOT_FOUND

201NWDS_INVALID_SUBSTITUTION

202NWDS_POSITION_UNDEFINED

203NWDS_CI2_SELF_LOCKED

204NWDS_CI2_NOT_LOCKED

205NWDS_CI2_NOT_OUR_LOCK

206NWDS_INVALID_ITEM

207NWDS_KERNEL_NOT_INITIALIZED

208NWDS_NO_TRANSACTION

209NWDS_INVALID_TRANSACTION_ID

210NWDS_NO_TRANSACTION_MONITORING

NetWeave API Reference Manual Version 2.0

January 2003 245

211NWDS_TRANSACTION_INCOMPLETE

212NWDS_STALE_ROW

213NWDS_LOGON_DISABLED

214NWDS_LOGON_DENIED

215NWDS_REQUEST_DENIED

216NWDS_DDL_MISSING_FIELD

217NWDS_DDL_INVALID_FIELD

218NWDS_DDL_SIZE_MISMATCH

219NWDS_DDL_NOT_DEFINED

220NWDS_NAME_NOT_FOUND

221NWDS_VMS_GETJPI_FAILED

222NWDS_VMS_CREPRC_FAILED

223NWDS_SQL_ERROR

224NWDS_SQL_BAD_USERNAME

225NWDS_SQL_BAD_PASSWORD

226NWDS_SQL_LOGON_FAILED

227NWDS_SQL_INVALID_COLUMN

228NWDS_SQL_INVALID_VERB

229NWDS_DLL_NOT_LOADED

230NWDS_DLL_IN_USE

231NWDS_RESUBMIT_TRANSACTION

232NWDS_BAD_INI_PARAMETER

233NWDS_NO_NWDS_TRANS_ID

234NWDS_ABORTED_BY_USER

235NWDS_TP_NOT_INITIALIZED

236NWDS_UX_USER_DATA_TO_PROCESS

237NWDS_WOULD_BLOCK

238NWDS_NOTHREAD

239NWDS_NOT_INITIALIZED

NetWeave API Reference Manual Version 2.0

January 2003 246

Glossary

Agent The NetWeave process that controls all input and output to queues, sends
notifications to clients when data base changes have occurred, and is
responsible for all aspects of security and data conversion.

Asynchronous An operation in which the applications program is allowed to continue
execution while the operation is performed. The access method informs
the application program when the operation is completed.

Broadcast services Simultaneous transmission of data to more than one destination: one
sender, unlimited receivers. Message deliveries are connectionless and
unacknowledged.

Client-database
services

Allows all other computers in the network, regardless of platform type, to
access one computer’s file system.

Client-server model A client application sends a request message to a server program. The
server program retrieves information or updates a local database on behalf
of the (remote) client application.

Client-transaction
services

Applications where programs communicate and synchronize operations by
exchanging messages (IPC). They are used to implement on-line
transaction processing and high-speed, real-time process control
applications.

Consumer process An asynchronous procedure that is responsible for processing the data in a
message queue.

Dispatcher In a distributor-based threaded server, the Dispatcher (provided by
NetWeave as part of the nwds_dispatcher_ function set) is
responsible for creating application threads and passing messages to them
once started.

Distributor A NetWeave-provided facility for multi-threaded server processes. The
Distributor starts and manages simple application threads for processing
messages.

Event-driven design A non-procedural methodology of software development that is
asynchronous in nature, and is fundamentally multi-threaded because it
allows you to maintain multiple concurrent sessions.

NetWeave API Reference Manual Version 2.0

January 2003 247

Interprocess
communication (IPC)

The process by which programs communicate data to each other and
synchronize their activities.

Item list A variable-length array of parameters whose last element is a unique type,
NWDS_END_OF_LIST. Each element (item) in the array has three
components:

• Type: a constant from netweave.h that identifies a parameter
(parameter name).

• Length: the length of the parameter value. Most parameters are
either 16-bit integers (NWDS_SHORT) or 32-bit integers
(NWDS_LONG). Variable -length parameters are considered to be
of type NWDS_CHAR. For return item lists, the length is the
maximum number of bytes that can be copied to the destination
location.

• Pointer to value: for a control item list, this is the address of the
location in memory where you have stored the value you want to
assign to the parameter. For a return item list, this is the address in
which to store the returned value.

Legacy application The vast collection of commercial and scientific applications written since
the late 70s that share one or more of these features:

• The application resides on a single hardware platform.
• The user interface is the traditional character-oriented terminal.
• Access to related application functions is via menus and function

keys.
• Application data are stored in record-oriented files.
• Access to these records is typically through keys and indices.

Loopback testing mode Used for unit testing locally. Most applications except client-database can
(and should) be constructed to run on a single platform. For example, if
you are doing IPC messaging, construct a simple client or server to interact
with your application. Such a test bed is said to run in “loopback” mode.

Netweave.h NetWeave header file. Contains the official definition of the API.

On-line transaction
processing (OLTP)

A system that processes multiple transactions concurrently and where the
data flows to/from the computer directly from the point of origin.

Peer-to-peer model Data communications between two nodes(processes) that have equal status
in the interchange. Any peer node can both generate messages to other
processes as well as receive (unsolicited) messages from other processes.

NetWeave API Reference Manual Version 2.0

January 2003 248

Polling for a completion Monitoring a flag that the completion function sets up when the
(asynchronous) NetWeave function finishes.

Producer application In FIFO message queuing, a producer puts messages at the tail of the
queue, and a consumer gets messages from the head of the queue.

Queuing services NetWeave services that store messages awaiting delivery. Queuing
services are often the core of store and forward applications.

Receiver application A process that reads and reacts to broadcast messages.

To scale
(growth of application)

To enlarge or expand either a process, or the number of messages that a
process can handle.

Sender application An application program that generates a message to broadcast.

Synchronous
function call

Initiated by a process that requests a specific event. All other processing is
suspended until a response is received for the request.

Thread,
boss thread,
worker thread

The boss/worker thread model is a thread-based mechanism for work
distribution between threads. A unit of work is delivered to the boss, which
chooses a worker thread to perform the task and then return the result to
either the boss or the originator.

UDP datagram User Datagram Protocol (UDP) is an IP protocol. Datagrams are ideal for
broadcasts because they are delivered to the IP network layer regardless
how many nodes in the network may consume the information. A
datagram is the basic unit of information passed across the Internet
environment. It contains a source and destination address along with the
data. An Internet Protocol (IP) datagram consists of an IP header followed
by the data.

Unsolicited message A message that a process receives without any prior prompting.

Workflow model The automobile assembly line is a paradigm for the workflow model in
manufacturing. Each cell accepts the outputs of its predecessors as its
inputs, modifies the assemblage and passes its output to its successors.

